scholarly journals Design and Performance Investigation of a Robot-Assisted Flexible Ureteroscopy System

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jianchang Zhao ◽  
Jianmin Li ◽  
Liang Cui ◽  
Chaoyang Shi ◽  
Guowu Wei

Flexible ureteroscopy (FURS) has been developed and has become a preferred routine procedure for both diagnosis and treatment of kidney stones and other renal diseases inside the urinary tract. The traditional manual FURS procedure is highly skill-demanding and easily brings about physical fatigue and burnout for surgeons. The improper operational ergonomics and fragile instruments also hinder its further development and patient safety enhancement. A robotic system is presented in this paper to assist the FURS procedure. The system with a master-slave configuration is designed based on the requirement analysis in manual operation. A joint-to-joint mapping strategy and several control strategies are built to realize intuitive and safe operations. Both phantom and animal experiments validate that the robot has significant advantages over manual operations, including the easy-to-use manner, reduced intraoperative time, and improved surgical ergonomics. The proposed robotic system can solve the major drawbacks of manual FURS. The test results demonstrate that the robot has great potential for clinical applications.

2020 ◽  
Author(s):  
Sicong Liu ◽  
Jonathan Folstein ◽  
Lawrence Gregory Appelbaum ◽  
Gershon Tenenbaum

Although the unwanted intrusive thoughts (UITs) exist widely in human beings and show similar characteristics between clinical and nonclinical forms, its control process remains unclear. Thoughts of choking under pressure, particularly among high-achieving athletes, represent a meaningful UIT type due to their psychological and performance-related impact. Taking a dynamic view of UIT control process, this study tested the effect of thought-control strategies among sub-elite to elite athletes, applied to individualized choking thoughts. Ninety athletes recollected recent athletic choking experiences prior to being randomized into one of three thought control interventions using strategies of either acceptance, passive monitoring (control), or suppression. To control for individual differences, athletes’ working memory capacity was measured and modeled as a covariate at baseline. The activation of choking thoughts during and after the intervention was gauged through multiple measurement approaches including conscious presence in mind, priming, and event-related potentials (P3b and N400 amplitudes). Results indicated that, relative to the control, suppression led to enhanced priming and reduced conscious presence of choking thoughts, whereas acceptance resulted in an opposite pattern of reduced priming and increased conscious presence of choking thoughts. In addition, thought-related stimuli elicited less negative-going N400 amplitudes and more positive-going P3b amplitudes than control stimuli. These findings advance understandings of the control mechanism underpinning UITs, and generate applied implications regarding UIT control in high-risk populations such as those with athletic expertise.


1987 ◽  
Vol 14 (3) ◽  
pp. 134-140 ◽  
Author(s):  
K.A. Clarke

Practical classes in neurophysiology reinforce and complement the theoretical background in a number of ways, including demonstration of concepts, practice in planning and performance of experiments, and the production and maintenance of viable neural preparations. The balance of teaching objectives will depend upon the particular group of students involved. A technique is described which allows the embedding of real compound action potentials from one of the most basic introductory neurophysiology experiments—frog sciatic nerve, into interactive programs for student use. These retain all the elements of the “real experiment” in terms of appearance, presentation, experimental management and measurement by the student. Laboratory reports by the students show that the experiments are carefully and enthusiastically performed and the material is well absorbed. Three groups of student derive most benefit from their use. First, students whose future careers will not involve animal experiments do not spend time developing dissecting skills they will not use, but more time fulfilling the other teaching objectives. Second, relatively inexperienced students, struggling to produce viable neural material and master complicated laboratory equipment, who are often left with little time or motivation to take accurate readings or ponder upon neurophysiological concepts. Third, students in institutions where neurophysiology is taught with difficulty because of the high cost of equipment and lack of specific expertise, may well have access to a low cost general purpose microcomputer system.


1986 ◽  
Vol 108 (4) ◽  
pp. 330-339 ◽  
Author(s):  
M. A. Townsend ◽  
D. B. Cherchas ◽  
A. Abdelmessih

This study considers the optimal control of dry bulb temperature and moisture content in a single zone, to be accomplished in such a way as to be implementable in any zone of a multi-zone system. Optimality is determined in terms of appropriate cost and performance functions and subject to practical limits using the maximum principle. Several candidate optimal control strategies are investigated. It is shown that a bang-bang switching control which is theoretically periodic is a least cost practical control. In addition, specific attributes of this class of problem are explored.


2014 ◽  
Vol 909 ◽  
pp. 317-322
Author(s):  
Huan Pao Huang ◽  
Ji An Yu ◽  
Qian Su ◽  
Lei Wang

2 × 660MW ultra-supercritical units of O'Brien Power Plant are single configuration of auxiliary pilot project, due to the higher its parameters and performance requirements, it need better control strategies to ensure safe and economical operation. Against traditional cascade PID main steam’s temperature control system delaying large, this article proposed control strategy based on Smith estimated. Main steam’s temperature controlled object inert zone mathematical model can be showed by multi-volume model, and use the improved system for large inertia Smith Predictor to make dynamic parameter control systems improvements. Simulation results of the simulation machine show that: Optimization emperor steam temperature control is in an adjustable range and the policy in separate auxiliary units is feasible.


2021 ◽  
pp. 1-27
Author(s):  
Saddam Hocine Derrouaoui ◽  
Yasser Bouzid ◽  
Mohamed Guiatni ◽  
Islam Dib

Recently, reconfigurable drones have gained particular attention in the field of automation and flying robots. Unlike the conventional drones, they are characterized by a variable mechanical structure in flight, geometric adaptability, aerial reconfiguration, high number of actuators and control inputs, and variable mathematical model. In addition, they are exploited to flight in more cluttered environments, avoid collisions with obstacles, transport and grab objects, cross narrow and small spaces, decrease different aerial damages, optimize the consumed energy, and improve agility and maneuverability in flight. Moreover, these new drones are considered as a viable solution to provide them with specific and additional functionalities. They are a promising solution in the near future, since they allow increasing considerably the capabilities and performance of classical drones in terms of multi-functionalities, geometric adaptation, design characteristics, consumed energy, control, maneuverability, agility, efficiency, obstacles avoidance, and fault tolerant control. This paper explores very interesting and recent research works, which include the classification, the main characteristics, the various applications, and the existing designs of this particular class of drones. Besides, an in-depth review of the applied control strategies will be presented. The links of the videos displaying the results of these researches will be also shown. A comparative study between the different types of flying vehicles will be established. Finally, several new challenges and future directions for reconfigurable drones will be discussed.


2017 ◽  
Vol 14 (5) ◽  
pp. 433-442
Author(s):  
Aalya Banu ◽  
Asan G.A. Muthalif

Purpose This paper aims to develop a robust controller to control vibration of a thin plate attached with two piezoelectric patches in the presence of uncertainties in the mass of the plate. The main goal of this study is to tackle dynamic perturbation that could lead to modelling error in flexible structures. The controller is designed to suppress first and second modal vibrations. Design/methodology/approach Out of various robust control strategies, μ-synthesis controller design algorithm has been used for active vibration control of a simply supported thin place excited and actuated using two piezoelectric patches. Parametric uncertainty in the system is taken into account so that the robust system will be achieved by maximizing the complex stability radius of the closed-loop system. Effectiveness of the designed controller is validated through robust stability and performance analysis. Findings Results obtained from numerical simulation indicate that implementation of the designed controller can effectively suppress the vibration of the system at the first and second modal frequencies by 98.5 and 88.4 per cent, respectively, despite the presence of structural uncertainties. The designed controller has also shown satisfactory results in terms of robustness and performance. Originality/value Although vibration control in designing any structural system has been an active topic for decades, Ordinary fixed controllers designed based on nominal parameters do not take into account the uncertainties present in and around the system and hence lose their effectiveness when subjected to uncertainties. This paper fulfills an identified need to design a robust control system that accommodates uncertainties.


Author(s):  
Haibo Feng ◽  
Yanwu Zhai ◽  
Yili Fu

Purpose Surgical robot systems have been used in single-port laparoscopy (SPL) surgery to improve patient outcomes. This study aims to develop a vision robot system for SPL surgery to effectively improve the visualization of surgical robot systems for relatively complex surgical procedures. Design/methodology/approach In this paper, a new master-slave magnetic anchoring vision robotic system for SPL surgery was proposed. A lighting distribution analysis for the imaging unit of the vision robot was carried out to guarantee illumination uniformity in the workspace during SPL surgery. Moreover, cleaning force for the lens of the camera was measured to assess safety for an abdominal wall, and performance assessment of the system was performed. Findings Extensive experimental results for illumination, control, cleaning force and functionality test have indicated that the proposed system has an excellent performance in providing the visual feedback. Originality/value The main contribution of this paper lies in the development of a magnetic anchoring vision robot system that successfully improves the ability of cleaning the lens and avoiding the blind area in a field of view.


1995 ◽  
Vol 4 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Olle Lindvall

Cell transplantation is now being explored as a new therapeutic strategy to restore function in the diseased human central nervous system. Neural grafts show long-term survival and function in patients with Parkinson's disease but the symptomatic relief needs to be increased. Cell transplantation seems justified in patients with Huntington's disease and, at a later stage, possibly also in demyelinating disorders. The further development in this research field will require systematic studies in animal experiments but also well-designed clinical trials in small groups of patients.


Sign in / Sign up

Export Citation Format

Share Document