scholarly journals Identification of Hypoxia-Related Differentially Expressed Genes and Construction of the Clinical Prognostic Predictor in Hepatocellular Carcinoma by Bioinformatic Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hao Guo ◽  
Jing Zhou ◽  
Yanjun Zhang ◽  
Zhi Wang ◽  
Likun Liu ◽  
...  

Background. Hypoxia closely relates to malignant progression and appears to be prognostic for outcome in hepatocellular carcinoma (HCC). Our research is aimed at mining the hypoxic-related genes (HRGs) and constructing a prognostic predictor (PP) model on clinical prognosis in HCC patients. Methods. RNA-sequencing data about HRGs and clinical data of patients with HCC were obtained from The Cancer Genome Atlas (TCGA) database portal. Differentially expressed HRGs between HCC and para-carcinoma tissue samples were obtained by applying the Wilcox analysis in R statistical software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for gene functional enrichment analyses. Then, the patients who were asked to follow up for at least one month were enrolled in the following study. Cox proportional risk regression model was applied to obtain key HRGs which related to overall survival (OS) in HCC. PP was constructed and defined, and the accuracy of PP was validated by constructing the signature in a training set and validation set. Connectivity map (CMap) was used to find potential drugs, and gene set cancer analysis (GSCA) was also performed to explore the underlying molecular mechanisms. Results. Thirty-seven differentially expressed HRGs were obtained. It contained 28 upregulated and 9 downregulated genes. After the univariate Cox regression model analysis, we obtained 27 prognosis-related HRGs. Of these, 25 genes were risk factors for cancer, and 2 genes were protective factors. The PP was composed by 12 key genes (HDLBP, SAP30, PFKP, DPYSL4, SLC2A1, HMOX1, PGK1, ERO1A, LDHA, ENO2, SLC6A6, and TPI1). GSCA results showed the overall activity of these 12 key genes in 10 cancer-related pathways. Besides, CMap identified deferoxamine, crotamiton, talampicillin, and lycorine might have effects with HCC. Conclusions. This study firstly reported 12 prognostic HRGs and constructed the model of the PP. This comprehensive research of multiple databases helps us gain insight into the biological properties of HCC and provides deferoxamine, crotamiton, talampicillin, and lycorine as potential drugs to fight against HCC.

2021 ◽  
Author(s):  
Renjie Liu ◽  
Guifu Wang ◽  
Chi Zhang ◽  
Dousheng Bai

Abstract Background: Dysregulation of the balance between proliferation and apoptosis is the basis for human hepatocarcinogenesis. In many malignant tumors, such as hepatocellular carcinoma (HCC), there is a correlation between apoptotic dysregulation and poor prognosis. However, the prognostic values of apoptosis-related genes (ARGs) in HCC have not been elucidated. Methods: To screen for differentially expressed ARGs, the expression levels of 161 ARGs from The Cancer Genome Atlas (TCGA) database(https://cancergenome.nih.gov/) were analyzed. Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to evaluate the underlying molecular mechanisms of differentially expressed ARGs in HCC. The prognostic values of ARGs were established using Cox regression, and subsequently, a prognostic risk model for scoring patients was developed. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves were plotted to determine the prognostic value of the model. Results: Compared to normal tissues, 43 highly up-regulated and 8 down-regulated ARGs in HCC tissues were screened. GO analysis results revealed that these 51 genes are indeed related to the apoptosis function. KEGG analysis revealed that these 51 genes were correlated with MAPK, P53, TNF, and PI3K-AKT signaling pathways, while Cox regression revealed that 5 ARGs (PPP2R5B, SQSTM1, TOP2A, BMF, and LGALS3) were associated with prognosis and were, therefore, obtained to develop the prognostic model. Based on the median risk scores, patients were categorized into high-risk and low-risk groups. Patients in the low-risk groups exhibited significantly elevated two-year or five-year survival probabilities (p < 0.0001). The risk model had a better clinical potency than the other clinical characteristics, with the area under the ROC curve (AUC = 0.741). The prognosis of HCC patients was established from a plotted nomogram. Conclusion: Based on the differential expression of ARGs, we established a novel risk model for predicting HCC prognosis. This model can also be used to inform the individualized treatment of HCC patients.


2021 ◽  
Author(s):  
ligong lu ◽  
Shaoqing Liu ◽  
Shengni Hua ◽  
Zhenlin Zhang ◽  
Meixiao Zhan ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer, and the systematic exploration of its prognostic indicators is urgently needed. In this study, we obtained 12 IRGs for the construction of a risk score prediction model in HCC by bioinformatics analysis. Methods Differentially expressed genes were screened using the R software edgeR package. Functional enrichment analysis was performed through gene ontology analyses as well as the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Single factor and multi-factor Cox analysis were employed for survival analysis. We used the Timer software to examine the correlation between risk score and tumor-infiltrating immune cells. Results We identified 3,215 up-regulated and 1,044 down-regulated genes in HCC tissues based on a cohort from The Cancer Genome Atlas (TCGA). Differentially expressed immune-related genes (IRGs) and survival-associated IRGs were further identified. We also integrated multivariate Cox regression analyses to obtain 12 IRGs for the construction of a risk score prediction model, whose performance was verified using the Kaplan-Meier survival and receiver operating characteristic curve analyses. Our findings suggest that the risk score was associated with clinical characteristics and the infiltration of immune cells in HCC patients. Conclusions We obtained a risk score prediction model of 12 IRGs in HCC by bioinformatics analysis and confirmed its performance.


2018 ◽  
Vol 48 (5) ◽  
pp. 1953-1967 ◽  
Author(s):  
Peng Lin ◽  
Dong-yue Wen ◽  
Qing Li ◽  
Yun He ◽  
Hong Yang ◽  
...  

Background/Aims: Hepatocellular carcinoma (HCC) is the most prevalent subtype of primary liver tumor worldwide. Growing evidence has led to a consensus that long non-coding RNAs (lncRNAs) have considerable influence on tumorigenesis and tumor progression of HCC via the mechanism of competing endogenous RNAs (ceRNAs). Methods: Here, we systematically investigated the expression landscape and clinical prognostic value of lncRNAs, micorRNAs (miRNAs), and mRNAs from The Cancer Genome Atlas. Differentially expressed RNAs were submitted to Cox regression analysis and the construction of prognostic indexes. A lncRNA-miRNA-mRNA regulatory network was then constructed based on interaction information derived from miRcode, TargetScan, miRTarBase, and miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to reveal and determine the functional roles of the ceRNA network in the prognosis of HCC. Results: We detected 77 differentially expressed lncRNAs, 29 differentially expressed miRNAs, and 1014 differentially expressed mRNAs in HCC, which were significantly associated with the overall survival of patients with HCC. We developed three prognostic prediction models that showed moderate predicting prognosis performance and were highly correlated with tumor burden, histological grade and pathological stage. Additionally, 10 survival-related lncRNAs, 6 survival-related miRNAs, and 31 survival-related mRNAs were included to develop a ceRNA network. Further functional enrichment analysis suggested that the ceRNA network was associated with a dismal prognosis for patients with HCC by disturbing the homeostasis of the cell cycle. Conclusion: Together, our study highlights the significant roles of lncRNAs in the development and implementation of monitoring surveillance and prognosis of HCC and provides a deeper understanding of the lncRNA-related ceRNA regulatory mechanism in the pathogenesis of HCC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Renjie Liu ◽  
Guifu Wang ◽  
Chi Zhang ◽  
Dousheng Bai

Abstract Background Dysregulation of the balance between proliferation and apoptosis is the basis for human hepatocarcinogenesis. In many malignant tumors, such as hepatocellular carcinoma (HCC), there is a correlation between apoptotic dysregulation and poor prognosis. However, the prognostic values of apoptosis-related genes (ARGs) in HCC have not been elucidated. Methods To screen for differentially expressed ARGs, the expression levels of 161 ARGs from The Cancer Genome Atlas (TCGA) database (https://cancergenome.nih.gov/) were analyzed. Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to evaluate the underlying molecular mechanisms of differentially expressed ARGs in HCC. The prognostic values of ARGs were established using Cox regression, and subsequently, a prognostic risk model for scoring patients was developed. Kaplan–Meier (K-M) and receiver operating characteristic (ROC) curves were plotted to determine the prognostic value of the model. Results Compared with normal tissues, 43 highly upregulated and 8 downregulated ARGs in HCC tissues were screened. GO analysis results revealed that these 51 genes are indeed related to the apoptosis function. KEGG analysis revealed that these 51 genes were correlated with MAPK, P53, TNF, and PI3K-AKT signaling pathways, while Cox regression revealed that 5 ARGs (PPP2R5B, SQSTM1, TOP2A, BMF, and LGALS3) were associated with prognosis and were, therefore, obtained to develop the prognostic model. Based on the median risk scores, patients were categorized into high-risk and low-risk groups. Patients in the low-risk groups exhibited significantly elevated 2-year or 5-year survival probabilities (p < 0.0001). The risk model had a better clinical potency than the other clinical characteristics, with the area under the ROC curve (AUC = 0.741). The prognosis of HCC patients was established from a plotted nomogram. Conclusion Based on the differential expression of ARGs, we established a novel risk model for predicting HCC prognosis. This model can also be used to inform the individualized treatment of HCC patients.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2020 ◽  
Author(s):  
Xiang Zhou ◽  
Keying Zhang ◽  
Fa Yang ◽  
Chao Xu ◽  
Jianhua Jiao ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is a disease with higher morbidity, mortality, and poor prognosis in the whole world. Understanding the crosslink between HCC and the immune system is essential for people to uncover a few potential and valuable therapeutic strategies. This study aimed to reveal the correlation between HCC and immune-related genes and establish a clinical evaluation model. Methods: We had analyzed the clinical information consisted of 373 HCC and 49 normal samples from the cancer genome atlas (TCGA). The differentially expressed genes (DEGs) were selected by the Wilcoxon test and the immune-related differentially expressed genes (IRDEGs) in DEGs were identified by matching DEGs with immune-related genes downloaded from the ImmPort database. Furthermore, the univariate Cox regression analysis and multivariate Cox regression analysis were performed to construct a prognostic risk model. Then, twenty-two types of tumor immune-infiltrating cells (TIICs) were downloaded from Tumor Immune Estimation Resource (TIMER) and were used to construct the correlational graphs between the TIICs and risk score by the CIBERSORT. Subsequently, the transcription factors (TFs) were gained in the Cistrome website and the differentially expressed TFs (DETFs) were achieved. Finally, the KEGG pathway analysis and GO analysis were performed to further understand the molecular mechanisms between DETFs and PDIRGs.Results: In our study, 5839 DEGs, 326 IRDEGs, and 31 prognosis-related IRDEGs (PIRDEGs) were identified. And 8 optimal PIRDEGs were employed to construct a prognostic risk model by multivariate Cox regression analysis. The correlation between risk genes and clinical characterizations and TIICs has verified that the prognostic model was effective in predicting the prognosis of HCC patients. Finally, several important immune-related pathways and molecular functions of the eight PIRDEGs were significantly enriched and there was a distinct association between the risk IRDEGs and TFs. Conclusion: The prognostic risk model showed a more valuable predicting role for HCC patients, and produced many novel therapeutic targets and strategies for HCC.


Author(s):  
Jindong Xie ◽  
Yutian Zou ◽  
Feng Ye ◽  
Wanzhen Zhao ◽  
Xinhua Xie ◽  
...  

Regarded as the most invasive subtype, triple-negative breast cancer (TNBC) lacks the expression of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth factor receptor 2 (HER2) proteins. Platelets have recently been shown to be associated with metastasis of malignant tumors. Nevertheless, the status of platelet-related genes in TNBC and their correlation with patient prognosis remain unknown. In this study, the expression and variation levels of platelet-related genes were identified and patients with TNBC were divided into three subtypes. We collected cohorts from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, we constructed a seven-gene signature which classified the two cohorts of patients with TNBC into low- or high-risk groups. Patients in the high-risk group were more likely to have lower survival rates than those in the low-risk group. The risk score, incorporated with the clinical features, was confirmed as an independent factor for predicting the overall survival (OS) time. Functional enrichment analyses revealed the involvement of a variety of vital biological processes and classical cancer-related pathways that could be important to the ultimate prognosis of TNBC. We then built a nomogram that performed well. Moreover, we tested the model in other cohorts and obtained positive outcomes. In conclusion, platelet-related genes were closely related to TNBC, and this novel signature could serve as a tool for the assessment of clinical prognosis.


2020 ◽  
Author(s):  
Hui Zhang ◽  
Senmiao Ni ◽  
Changxian Li ◽  
Haoming Zhou ◽  
Jianling Bai ◽  
...  

Abstract Background: Liver cancer is the fourth most common cause of cancer-related death and rank sixth in terms of incident cases. We aim to identify a set of miRNAs and a miRNA-based signature related to tumorigenesis and prognosis in patients with hepatocellular carcinoma (HCC). Methods: We analyzed the miRNA sequencing profiles of 373 HCC patients downloaded from The Cancer Genome Atlas LIHC program. The isoform quantification profiles were transformed into 5p and 3p mature miRNA names. Differentially expressed (DE) miRNAs between tumor and adjacent normal tissues were identified by Wald test based on the negative binomial distribution. Prognostic miRNAs associated with overall survival were confirmed by multivariate Cox proportional hazards models. The miRNA-based signatures were obtained from the linear predictors of cox regression, and the prognostic performance was compared by Harrel’s C-index and revealed by the restricted mean survival (RMS) curve. Results: The selected twelve DE miRNAs showed a good performance to classify tumor tissues from normal tissues. Meanwhile, a miRNA-based prognostic signature of eight mature miRNAs was constructed, which significantly stratified patients into high- vs low-risk groups in terms of overall survival (hazard ratio, 4.11; 95% CI, 2.71-6.24; P<0.001). When integrated with clinical information, the composite miRNA-clinical signature showed improved prognostic accuracy relative to the eight-miRNA signature alone. As we set the follow-up time at 5 years, the estimated RMST difference between low- and high-risk group stratified by miRNA index was 1.39 (95% CI: 0.95-1.83) months, which is lesser than the difference between miRNA-clinical risk groups (1.63, 95%CI: 1.20-2.06). Functional enrichment analysis indicated that the target mRNAs of selected miRNAs were mainly enriched in cancer-related pathways and vital cell biological processes. Conclusions: The proposed DE miRNAs and miRNA-clinical signature are promising biomarkers for discrimination and predicting overall survival respectively in HCC patients. These biomarkers may have significant relevance for development of new drug research and targeting therapies for HCC patients.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7968 ◽  
Author(s):  
Jingwei Liu ◽  
Weixin Liu ◽  
Hao Li ◽  
Qiuping Deng ◽  
Meiqi Yang ◽  
...  

Background As the most frequently occurred tumor in biliary tract, cholangiocarcinoma (CCA) is mainly characterized by its late diagnosis and poor outcome. It is therefore urgent to identify specific genes and pathways associated with its progression and prognosis. Materials and Methods The differentially expressed genes in The Cancer Genome Atlas were analyzed to build the co-expression network by Weighted gene co-expression network analysis (WGCNA). Gene ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted for the selected genes. Module–clinical trait relationships were analyzed to explore the association with clinicopathological parameters. Log-rank tests and cox regression were used to identify the prognosis-related genes. Results The most related modules with CCA development were tan module containing 181 genes and salmon module with 148 genes. GO analysis suggested enrichment terms of digestion, hormone transport and secretion, epithelial cell proliferation, signal release, fibroblast activation, response to acid chemical, wnt, Nicotinamide adenine dinucleotide phosphate metabolism. KEGG analysis demonstrated 15 significantly altered pathways including glutathione metabolism, wnt, central carbon metabolism, mTOR, pancreatic secretion, protein digestion, axon guidance, retinol metabolism, insulin secretion, salivary secretion, fat digestion. Key genes of SOX2, KIT, PRSS56, WNT9A, SLC4A4, PRRG4, PANX2, PIR, RASSF8, MFSD4A, INS, RNF39, IL1R2, CST1, and PPP3CA might be potential prognostic markers for CCA, of which RNF39 and PRSS56 also showed significant correlation with clinical stage. Discussion Differentially expressed genes and key modules contributing to CCA development were identified by WGCNA. Our results offer novel insights into the characteristics in the etiology, prognosis, and treatment of CCA.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zaisheng Ye ◽  
Miao Zheng ◽  
Yi Zeng ◽  
Shenghong Wei ◽  
He Huang ◽  
...  

Patients with advanced stomach adenocarcinoma (STAD) commonly show high mortality and poor prognosis. Increasing evidence has suggested that basic metabolic changes may promote the growth and aggressiveness of STAD; therefore, identification of metabolic prognostic signatures in STAD would be meaningful. An integrative analysis was performed with 407 samples from The Cancer Genome Atlas (TCGA) and 433 samples from Gene Expression Omnibus (GEO) to develop a metabolic prognostic signature associated with clinical and immune features in STAD using Cox regression analysis and least absolute shrinkage and selection operator (LASSO). The different proportions of immune cells and differentially expressed immune-related genes (DEIRGs) between high- and low-risk score groups based on the metabolic prognostic signature were evaluated to describe the association of cancer metabolism and immune response in STAD. A total of 883 metabolism-related genes in both TCGA and GEO databases were analyzed to obtain 184 differentially expressed metabolism-related genes (DEMRGs) between tumor and normal tissues. A 13-gene metabolic signature (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) was constructed for prognostic prediction of STAD. Sixteen survival-related DEMRGs were significantly related to the overall survival of STAD and the immune landscape in the tumor microenvironment. Univariate and multiple Cox regression analyses and the nomogram proved that a metabolism-based prognostic risk score (MPRS) could be an independent risk factor. More importantly, the results were mutually verified using TCGA and GEO data. This study provided a metabolism-related gene signature for prognostic prediction of STAD and explored the association between metabolism and the immune microenvironment for future research, thereby furthering the understanding of the crosstalk between different molecular mechanisms in human STAD. Some prognosis-related metabolic pathways have been revealed, and the survival of STAD patients could be predicted by a risk model based on these pathways, which could serve as prognostic markers in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document