scholarly journals Distribution of Seismic Damage in Steel Buildings Component Equipped by Viscoelastic Dampers against Far-Field Earthquake

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yaser Parvin Darabad ◽  
Alireza Hassanpour Yasaghi ◽  
Beniamin Khodaei ◽  
Reza Zarei

Damage to structures with the concept of inelastic behavior and consequently hysteresis energy is very close. Therefore, it can be said that hysteresis energy at these levels can be a significant criterion for designing or controlling the structure. In this research, the first three steel frames of 4, 8, and 12 floors with the medium bending frame system have been designed with the statically equivalent method according to valid international regulations; then, all frames have been subjected to nonlinear dynamic analysis by seven accelerometers. The purpose of this study is to investigate the distribution of damage, energy, relative displacement, roof displacement, and base shear in the studied frames. In the following, the necessity of using the retrofitting method to reduce the relative displacement is described based on the regulations. Then, viscoelastic dampers are used to strengthen and reduce damage in the studied frames in the face of distant field records. The obtained results indicate that despite the uniform distribution of resistance in the height of the floors, the hysteresis energy distribution and damage diagrams do not follow this distribution and other parameters such as hysteresis energy, which play a major role in structural members’ damage, should be included in the design process. In this research, viscoelastic dampers have been used for retrofitting. The results show that this type of damper shows good performance in reducing damage under earthquakes in the remote area.

2020 ◽  
Vol 1 (2) ◽  
pp. 24-30
Author(s):  
Esra Mete Güneyisi

In this study, the seismic behavior of steel framed buildings under the effect of near-field with pulse (NF-P), near-field without pulse (NF-NP), and far-field (FF) ground motions was evaluated in a comparative manner. For this, 8 and 12 story steel moment-resisting frames (SMRFs) having four equal bays and identical story height were taken into account and then subjected to a series of NF-P, NF-NP and FF earthquake motions based on the nonlinear dynamic analysis. Each earthquake series included 10 different acceleration records. They were scaled to match the target design spectrum. Numerical modeling and analysis of the SMRFs were performed through Seismostruct software. The response quantities utilized in the comparisons of the case study SMRFs were the inter-story drift ratio, roof drift ratio, base shear coefficients, and time history of displacement in different story level. These responses were examined comparatively.


2010 ◽  
Vol 37 (9) ◽  
pp. 1201-1211 ◽  
Author(s):  
Hyunhoon Choi ◽  
Jinkoo Kim

Passive energy dissipation devices, such as, viscous, viscoelastic, and friction devices are generally installed in buildings using diagonal or chevron braces. To increase the effective damping force and to reduce the damper volume, various magnifying system of the damper displacement, such as, toggle brace system and scissor-jack-damper configuration have been developed with increase in installation cost. In this study, new installation scheme for passive dampers was proposed using cables installed in such a way that relative displacement equal to storey displacement occurs between the cable and the structure when the structure is subjected to lateral load. The cables can be installed continuously or discretely between base and top storey of the structure. To verify the validity of the proposed method nonlinear dynamic analysis of model structures with viscoelastic dampers installed using the proposed configuration scheme was carried out using three earthquake records and two sinusoidal forces. According to the analysis, the proposed method resulted in significant reduction in the size of dampers compared with the conventional installation methods.


2018 ◽  
Vol 24 (4) ◽  
pp. 112
Author(s):  
Thamir K. Mahmoud ◽  
Hayder A. Al-Baghdadi

In this paper, the time-history responses of a square plan two-story reinforced concrete prototype building, considering the elastic and inelastic behavior of the materials, were studied numerically. ABAQUS software was used in three-dimensional (3D) nonlinear dynamic analysis to predict the inelastic response of the buildings. Concrete Damage Plasticity Model (CDPM) has been used to model the inelastic behavior of the reinforced concrete building under seismic excitation. The input data included geometric information, material properties, and the ground motion. The building structure was designed only for gravity load according to ACI 318 with non-seismically detailing requirements. The prototype building was subjected to El Centro 1940 NS earthquake at different amplitudes (PGA=0.05g, PGA=0.15g, and PGA=0.32g). The elastic and inelastic responses of the 3D numerical model of the same building were evaluated. The differences between the elastic and inelastic displacements and base shear forces were analyzed. It was found from the results that base shear responses are significantly more sensitive to the numerical model of analysis than displacement responses. The evaluation showed that the base shear force and displacement responses of a two-story R.C. building subjected to severe earthquake excitation are very sensitive to the numerical model used whether it is elastic or inelastic.  


2021 ◽  
Author(s):  
Ahmet Hilmi DERİNGÖL ◽  
Esra Mete Güneyisi

Abstract In this study, the use of high damping rubber bearing (HDRB) with various design properties in mitigating the seismic effects for steel buildings was investigated. For this, a generalized demand on the analytical model of HDRB was introduced and eighteen different models of HDRB were examined comparatively. These models were created by considering three significant isolation parameters of HDRB such as isolation period T (2, 2.5, and 3 s), effective damping ratio βeff (0.05, 0.10, 0.15), and post-yield stiffness ratio λ (3 and 6). The benchmark low (3-storey), mid (6-storey), and high-rise (9-storey) steel buildings were equipped with different isolation systems of HDRB and then subjected to a set of earthquake ground motions through nonlinear time history analyses in order to evaluate the actual nonlinear behaviour of the bearings in the base-isolated steel buildings in service. The base-isolated frames were assessed by the variation of the selected structural response parameters such as isolator displacement, relative displacement, inter-storey drift ratio, absolute acceleration, base shear, base moment, hysteretic curve, and dissipated energy. The effectiveness of the steel buildings with HDRB was evaluated. It was shown that the seismic performance of the base-isolated structure was remarkably influenced by the isolation parameters. The higher value of the isolation period and effective damping ratio tended to increase the amount of dissipated energy associated with low post-yield stiffness ratio.


2021 ◽  
Vol 331 ◽  
pp. 05007
Author(s):  
Ridho Aidil Fitrah ◽  
Masrilayanti Masrilayanti ◽  
Gita Zakiah Putri ◽  
Zev Al Jauhari

Setback irregularities are considered where discontinuity between adjacent stories is excessive. This irregularity caused the probability of high damage at structures subjected to strong earthquake motion. For this purpose, this study was conducted by modeling the steel special moment frame (SMF) structures using a finite element calculation program with nonlinear static analysis compared to Padang city’s response spectrum. The buildings are also modeled with two types of setbacks: single and multiple setbacks. The results of this paper are discussed including the explanation of many parameters that relate to elastic and inelastic seismic responses of steel special moment frame (SMF). Based on the results, the setback irregularities, both single and multiple setbacks, the inelastic seismic responses are adequately sufficient to SNI 1726 2019 regarding drift limit. The other seismic responses are also discussed in terms of fundamental periods, inter-story drifts, story stiffness, and base shear. Referred to Indonesian Seismic Provision, SNI 1726 2019, it is found that single setback building has more adequate than multiple setbacks in terms of seismic responses. Then, the seismic assessments between these setbacks are explained to address the recommendations about future prevention toward damages and failures in steel buildings.


2017 ◽  
Vol 873 ◽  
pp. 259-263
Author(s):  
Hao Zhang ◽  
Zi Hang Zhang ◽  
Yong Qiang Li

The dynamic behavior of the prefabricated and cast in situ concrete shear wall structures subjected to seismic loading is investigated by finite element method. This paper adopted a prefabricated concrete shear wall in a practical engineering. The Precise finite element models of prefabricated and cast in situ concrete shear wall were established respectively by ABAQUS. The damaged plasticity model of concrete and kinematic hardening model of reinforcing steel were used. The top displacement, top acceleration, story drift ratio and base shear forceof prefabricated and cast in situ concrete shear wall under different seismic excitation were compared and analyzed. The earthquake resistant behaviorsof the two kinds of structuresare analyzed and compared. Results show that the performances of PC structure were equal to the cast-in-situ ones.


2011 ◽  
Vol 17 (3) ◽  
pp. 348-356 ◽  
Author(s):  
Mutlu Seçer ◽  
Özgür Bozdag

Seismic structural design of X-braced steel buildings using life cycle cost analysis aims to reveal the most appropriate structural solution for both satisfying economic aspects and earthquake resistant design code requirements among a number of variant solutions accounting architectural concerns. In this study, five storey X-braced steel building with three different X-bracing configurations is designed using various base shear values and the total cost of each design of three configurations is calculated for different earthquake intensities. Initial costs and the cost of the expected damages caused by future earthquakes are determined for each X-bracing configuration. The maximum interstorey drift ratio is selected as seismic performance parameter for satisfying earthquake code demands and evaluated through nonlinear static analysis. The optimum X-bracing configuration is determined by using the balance between the initial cost and the life-time earthquake damage cost. Santrauka Pasitelkus gyvavimo ciklo kainos analizę, plieninių konstrukcijų pastatų su kryžminiais ryšiais seisminio konstrukcijų projektavimo tikslas – rasti tinkamiausią konstrukcinį sprendimą, kuris atitiktų ekonominę pusę, ir žemės drebėjimui atspariųstatinių projektavimo kodekso reikalavimus, kai, atsižvelgiant įarchitektūrines sąsajas, yra daugybė sprendimų variantų . Šiame tyrime, naudojant įvairias pagrindų šlyties jėgų reikšmes, projektuojamas penkiaaukštis plieninių konstrukcijų pastatas su trimis skirtingais kryžminių ryšių pavidalais ir kiekvienam atvejui iš trijų pavidalų apskaičiuojama bendroji kaina, esant skirtingo stiprumo žemės drebėjimui. Pradinė kaina ir numatomos bū simų žemės drebėjimų padaryto apgadinimo kaina nustatoma kiekvienam kryžminių ryšių pavidalui. Siekiant laikytis žemės drebėjimų kodekso reikalavimų, kaip seisminių charakteristikų rodiklis pasirenkamas didžiausias tarpaukštinės slinkties santykis, kuris įvertinamas naudojant netiesinę statinę analizę. Optimalus kryžminių ryšių pavidalas nustatomas subalansuojant pradinę kainą ir per visą gyva-vimo trukmę žemės drebėjimų padarytos žalos kainą.


2018 ◽  
Vol 15 (1) ◽  
pp. 1-14
Author(s):  
Ahad Javanmardi ◽  
Zainab Ibrahim ◽  
Khaled Gheadi ◽  
Mohammed Jameel ◽  
Usman Hanif ◽  
...  

Nowadays, development of cable-stayed bridges is increasing around the world. The mitigation of seismic forces to these bridges are obligatory to prevent damages or failure of its structural members. Herein, this paper aimed to determine the near-fault ground motion effect on an existing cablestayed bridge equipped with lead-rubber bearing. In this context, Shipshaw cable-stayed bridge is selected as the case study. The selected bridge has a span of 183.2 m composite deck and 43 m height of steel tower. 2D finite element models of the non-isolated and base isolated bridges are modelled by using SAP2000. Three different near-fault ground motions which are Tabas 1978, Cape Mendocino 1992 and Kobe 1995 were subjected to the 2D FEM models in order to determine the seismic behaviour of the bridge. The near-fault ground motions were applied to the bridge in the longitudinal direction. Nonlinear dynamic analysis was performed to determine the dynamic responses of the bridge. Comparison of dynamic response of nonisolated and base isolated bridge under three different near-fault ground motions were conducted. The results obtained from numerical analyses of the bridge showed that the isolation system lengthened the period of bridge and minimised deck displacement, base shear and base moment of the bridge. It is concluded that the isolation system significantly reduced the destructive effects of near-fault ground motions on the bridge.


2019 ◽  
Vol 9 (1) ◽  
pp. 115-120
Author(s):  
Mahmoud Sadeghpour

Abstract In knee brace and shear panel systems, unlike eccentric braced frames, energy absorption is achieved through plastic deformation when sub-members yield by shear forces or bending moments caused by bracing members during severe earthquakes. Several studies have been conducted on the behavior of these two systems which resulted in design methods to obtain the best structural performance. The present study attempted to design frames using these methods, and then to compare them in terms of technical and economic factors. In this regard, to obtain a pattern of the frames behavior, a 3-span 5-storey frame was modeled for three different types of brace system (coaxial, knee and shear panel) using ANSYS software. After performing pushover nonlinear static analysis, behavior coefficients were determined and the force-lateral displacement curves of the systems were compared. In the next step, 3-span 5- 8- and 12-storey frames were analyzed and designed using ETABS software and were compared in terms of the parameters such as relative lateral displacement, normal period of system, structural weight, and shear force into foundation. The results indicate that using the above-mentioned systems, structure will exhibit more ductility which leads to reduced design base shear. The forces applied to main structural members (beams, columns, and braces) are reduced by the use of knee brace and shear panel systems. This will affect the design and sometimes increases or decreases weight of these members.


Sign in / Sign up

Export Citation Format

Share Document