scholarly journals Investigation of the Performance of Ceramic Fiber Modified Asphalt Mixture

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiushan Wang ◽  
Hengyu Zhou ◽  
Xingxing Hu ◽  
Senjie Shen ◽  
Bowen Dong

Ceramic fiber (CF) is a novel thermally resistant material with the potential to improve the high-temperature performance of asphalt mixture. In this study, asphalt mixtures with 0%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% CFs were prepared. The Marshall test, wheel tracking test, Marshall immersion test, freeze-thaw splitting test, and low-temperature bending test were conducted to evaluate the performance of the CF-modified asphalt mixture. The morphologies of these asphalt mixtures were observed using scanning electron microscopy to analyze the modification mechanism. The results showed that the CFs could improve the mechanical properties, high-temperature stability, moisture susceptibility, and low-temperature cracking resistance of asphalt mixture, with the optimum CF content being 0.4%. Further microscopic analysis showed that the CFs improved the performances of asphalt mixture through forming three-dimensional network structure, asphalt absorption, bridging cracks, and pulling-out effect.

2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


2014 ◽  
Vol 587-589 ◽  
pp. 1276-1280
Author(s):  
Xiang Fei Zhai

Through the freeze-thaw splitting test, rutting test, low temperature bending test, comprehensive analysis the affect of coarse and fine ratio on ATB asphalt mixture performance. The results showed that: the ratio of change have a significant effect on water stability, high temperature stability, low temperature stability. Reasonable coarse and fine ratio have a higher degree of stability; Smaller coarse and fine ratio can effectively improve the asphalt mixture water stable performance, with coarse and fine ratio increased, freeze-thaw splitting strength ratio decreases; Larger coarse and fine ratio have an adverse effect on the high temperature stability, dynamic stability after the first increase and then decrease with increasing coarse and fine ratio; Smaller coarse and fine ratio can significantly improve the low temperature stability.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


2012 ◽  
Vol 557-559 ◽  
pp. 329-333
Author(s):  
Zhong Run Zheng ◽  
Chao Zhao ◽  
Yi Feng Zhao ◽  
Pei Song

This paper introduces an asphalt mixture that mixed with different admixtures, rutting resistance agent and lignin fiber, at the same time. Rutting test and freeze-thaw splitting test are used to analyze rutting resistance on the high temperature and low temperature cracking of the asphalt mixture. The experiments with different mixes material composition are conducted to analysis various properties of the two admixtures on the mixture, especially the high temperature stability, low temperature crack resistance and the law of improvement effect. In addition, the experiments also determine the optimal asphalt content of different type of mixtures. The results showed that the single-doped KTL rutting resistance or lignin fibers have some improvement in water temperature performance of asphalt mixture, stability improvement of double-doped admixture asphalt mixture is better than the single-doped asphalt mixture, such as KTL rutting resistance agents and lignin fibers


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4910
Author(s):  
Ping Zhang ◽  
Lan Ouyang ◽  
Lvzhen Yang ◽  
Yi Yang ◽  
Guofeng Lu ◽  
...  

As environmentally friendly materials, carbon black and bio-oil can be used as modifiers to effectively enhance the poor high-temperature and low-temperature performance of base asphalt and its mixture. Different carbon black and bio-oil contents and shear time were selected as the test influencing factors in this work. Based on the Box–Behnken design (BBD), carbon black/bio-oil composite modified asphalt was prepared to perform the softening point, penetration, multiple stress creep and recovery (MSCR), and bending beam rheometer (BBR) tests. The response surface method (RSM) was used to analyze the test results. In addition, the base asphalt mixtures and the optimal performance carbon black/bio-oil composite modified asphalt mixtures were formed for rutting and low-temperature splitting tests. The results show that incorporating carbon black can enhance the asphalt’s high-temperature performance by the test results of irrecoverable creep compliance (Jnr) and strain recovery rate (R). By contrast, the stiffness modulus (S) and creep rate (M) test results show that bio-oil can enhance the asphalt’s low-temperature performance. The quadratic function models between the performance indicators of carbon black/bio-oil composite modified asphalt and the test influencing factors were established based on the RSM. The optimal performance modified asphalt mixture’s carbon black and bio-oil content was 15.05% and 9.631%, and the shear time was 62.667 min. It was revealed that the high-temperature stability and low-temperature crack resistance of the carbon black/bio-oil composite modified asphalt mixture were better than that of the base asphalt mixture because of its higher dynamic stability (DS) and toughness. Therefore, carbon black/bio-oil composite modified asphalt mixture can be used as a new type of choice for road construction materials, which is in line with green development.


2012 ◽  
Vol 204-208 ◽  
pp. 4143-4146
Author(s):  
Zhong Guo He ◽  
Xin De Tang ◽  
Wen Jun Yin ◽  
Yi Fan Sun ◽  
Zhong Bo Liu

Montmorillonite/SBS composite modifed asphalts were prepared by mixing montmorillonite with SBS-modified asphalt, further the corresponding asphalt mixtures were obtained. The paving technical indexes of the mixture such as physical properties, moisture suscepyibility, and high temperature stability were tested, and compared with that of the corresponding SBS-modifed asphalt mixture and base asphalt mixture. The results demonstrate that the montmorillonite/SBS composite modifed asphalt mixture exhibites enhanced stability, improved flow value and moisture susceptibility, and increased high temperature stability.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1481 ◽  
Author(s):  
Xiaoliang Zhang ◽  
Ben Zhang ◽  
Huaxin Chen ◽  
Dongliang Kuang

Road construction consumes great amounts of high-grade natural resources. Using low-grade natural rocks or some solid wastes as substitute materials is a hot topic. Considering this, the feasibility of using low-grade granite aggregate, solid waste-based filler (desulphurization gypsum residues, DGR) and binder (waste tire rubber modified asphalt, RMA) simultaneously in asphalt mixtures has been fully investigated in this research. The commonly used base asphalt and limestone powder (LP) filler were control groups. Material characteristics of raw materials mainly including micro-morphology, functional group, mineral phase, chemical composition and thermal stability were first evaluated in order to recognize them. Four asphalt mixtures (two asphalt binder and two filler) were then designed by standard Superpave method. Finally, a detailed investigation into the pavement performance of asphalt mixtures was carried out. The moisture damage resistance and low-temperature crack resistance were detected by the changing rules of stability, strength and fracture energy, and the high-temperature stability and fatigue performance were determined by wheel tracking test and indirect tensile (IDT) fatigue test, respectively. Results suggested that RMA and DGR both showed positive effects on the low-temperature crack resistance and fatigue property of the granite asphalt mixture. DGR also strengthened moisture stability. The contribution of RMA on high-temperature deformation resistance of the granite asphalt mixture was compelling. It can offset the insufficiency in high-temperature stability made by DGR. A conclusion can be made that asphalt mixture prepared with granite, DGR and RMA possesses satisfactory pavement performances.


2011 ◽  
Vol 204-210 ◽  
pp. 2075-2078
Author(s):  
Hao Li ◽  
Rui Zhou ◽  
Xuan Cang Wang

In order to improve the pavement performance of reclaimed asphalt mixture, using Marshall test, rutting test, splitting test and long-term aging test, taking stability, dynamic stability, fatigue strength, stiffness modulus, and freeze-thaw splitting tension strength as the target, the influence law of old asphalt mixture content and regenerant content on pavement performance of reclaimed asphalt mixture is systematically studied. The results show that: the proportion of old asphalt mixture has no influence on high temperature performance of reclaimed asphalt mixture. With the proportion of old mixture increases, the optimum asphalt-aggregate ratio, low temperature performance, water stability, and anti-aging property of reclaimed asphalt mixture decrease. Addition of regenerant improves the low temperature performance of reclaimed asphalt mixture, and reduces the strength and high temperature stability of reclaimed asphalt mixture. Research results have great guiding significance for old asphalt mixture content selection, regenerant content selection and improving pavement performance of reclaimed asphalt mixture.


2014 ◽  
Vol 919-921 ◽  
pp. 1079-1084 ◽  
Author(s):  
Sen Han ◽  
Dong Yu Niu ◽  
Ya Min Liu ◽  
De Chen ◽  
Deng Wu Liu

The types and contents of styrene-butadiene-styrene (SBS) modifier are two important factors of SBS modified asphalt mixtures. Nowadays, SBS are extensively utilized to modified asphalt in order to improve the performance of the flexible pavement. The objective of this study is to determine a best selection of types and contents of SBS modifier, which can improve high-temperature stability; low-temperature anti-cracking performance and moisture susceptibility of SBS modified asphalt mixture. The mixtures with four types of SBS (Linear A, Linear B, Star A, Star B) and the different contents of each type SBS including Linear SBS of 0%, 3%, 4%, 4.5% and Star SBS of 0%, 3%, 3.5%, 4%, were evaluated for the pavement performance of them under laboratory conditions. Wheel tracking test, beam bending test and freeze-thaw tensile strength test were chosen and carried out to determine high-temperature stability, low-temperature anti-cracking performance and the moisture susceptibility respectively. The laboratory testing results indicate that Star SBS show the more effective effects than Linear SBS to improve the high-temperature stability, low-temperature anti-cracking performance and moisture susceptibility of SBS modified asphalt mixture, and the optimum content of SBS can also play a key role the improvement of the pavement performance.


2014 ◽  
Vol 599 ◽  
pp. 252-256 ◽  
Author(s):  
Yan Shuang Zhang ◽  
Quan Liang Li ◽  
Jian Zhong Dong ◽  
Qing Hu Zhang

Through the asphalt performance experiment, obtains the best proportion of rubber powder. Through the contrast test of asphalt mixture, the water sensibility, high temperature stability and low temperature stability of asphalt mixture have been studied. Key words: rubber powder modified asphalt asphalt mixture performance study


Sign in / Sign up

Export Citation Format

Share Document