scholarly journals Salvia miltiorrhiza and the Volatile of Dalbergia odorifera Attenuate Chronic Myocardial Ischemia Injury in a Pig Model: A Metabonomic Approach for the Mechanism Study

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Rui Lin ◽  
Fei Mu ◽  
Yao Li ◽  
Jialin Duan ◽  
Meina Zhao ◽  
...  

Salvia miltiorrhiza (SM) coupled with Dalbergia odorifera (DO) has been used to relieve cardiovascular diseases in China for many years. Our previous studies have integrated that SM—the volatile oil of DO (SM-DOO)—has a cardioprotective effect on chronic myocardial ischemia based on a pharmacological method, but the cardioprotective mechanism has not been elucidated completely in the metabonomic method. In the present study, a metabonomic method based on high-performance liquid chromatography time-of-flight mass spectrometry (HPLC-Q-TOF-MS) was performed to evaluate the effects of SM-DOO on chronic myocardial ischemia induced by an ameroid constrictor, which was placed on the left anterior descending coronary artery (LAD) of pigs. Pigs were divided into three groups: sham, model, and SM-DOO group. With multivariate analysis, a clear cluster among the different groups was obtained and the potential biomarkers were recognized. These biomarkers were mainly related to energy metabolism, glucose metabolism, and fatty acid metabolism. Furthermore, the protein expressions of phosphorylated AMP-activated protein kinase (p-AMPK) and glucose transporter-4 (GLUT4) were significantly upregulated by SM-DOO. The result indicated that SM-DOO could regulate the above biomarkers and metabolic pathways, especially energy metabolism and glucose metabolism. By analyzing and verifying the biomarkers and metabolic pathways, further understanding of the cardioprotective effect of SM-DOO with its mechanism was evaluated. Metabonomic is a reliable system biology approach for understanding the cardioprotective effects of SM-DOO on chronic myocardial ischemia and elucidating the mechanism underlying this protective effect.

2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Yuri Okazaki ◽  
Jennifer Murray ◽  
Ali Ehsani ◽  
Jessica Clark ◽  
Robert H. Whitson ◽  
...  

Abstract Background Skeletal muscle has an important role in regulating whole-body energy homeostasis, and energy production depends on the efficient function of mitochondria. We demonstrated previously that AT-rich interactive domain 5b (Arid5b) knockout (Arid5b−/−) mice were lean and resistant to high-fat diet (HFD)-induced obesity. While a potential role of Arid5b in energy metabolism has been suggested in adipocytes and hepatocytes, the role of Arid5b in skeletal muscle metabolism has not been studied. Therefore, we investigated whether energy metabolism is altered in Arid5b−/− skeletal muscle. Results Arid5b−/− skeletal muscles showed increased basal glucose uptake, glycogen content, glucose oxidation and ATP content. Additionally, glucose clearance and oxygen consumption were upregulated in Arid5b−/− mice. The expression of glucose transporter 1 (GLUT1) and 4 (GLUT4) in the gastrocnemius (GC) muscle remained unchanged. Intriguingly, the expression of TBC domain family member 1 (TBC1D1), which negatively regulates GLUT4 translocation to the plasma membrane, was suppressed in Arid5b−/− skeletal muscle. Coimmunofluorescence staining of the GC muscle sections for GLUT4 and dystrophin revealed increased GLUT4 localization at the plasma membrane in Arid5b−/− muscle. Conclusions The current study showed that the knockout of Arid5b enhanced glucose metabolism through the downregulation of TBC1D1 and increased GLUT4 membrane translocation in skeletal muscle.


2004 ◽  
Vol 52 (S 1) ◽  
Author(s):  
C Heilmann ◽  
S Tascher ◽  
L Bredow ◽  
T Renner ◽  
H G�bel ◽  
...  

1997 ◽  
Vol 272 (6) ◽  
pp. G1530-G1539 ◽  
Author(s):  
C. Cherbuy ◽  
B. Darcy-Vrillon ◽  
L. Posho ◽  
P. Vaugelade ◽  
M. T. Morel ◽  
...  

We have reported previously that a high glycolytic capacity develops soon after birth in enterocytes isolated from suckling newborn pigs. In the present work, we investigated whether such metabolic changes could affect intestinal glucose utilization in vivo and examined possible variations in glucose metabolism along the small intestine. Glucose utilization by individual tissues was assessed using the 2-deoxyglucose technique. The overall glucose utilization rate was doubled in suckling vs. fasting 2-day-old pigs because of significantly higher rates in all tissues studied, except for the brain. In parallel, enterocytes were isolated from the proximal, medium, or distal jejunoileum of newborn vs. 2-day-old pigs and assessed for their capacity to utilize, transport, and phosphorylate glucose. Intestinal glucose consumption accounted for approximately 15% of glucose turnover rate in suckling vs. 8% in fasting pigs. Moreover, there was a proximal-to-distal gradient of glucose utilization in the intestinal mucosa of suckling pigs. Such a gradient was also evidenced on isolated enterocytes. The stimulation of both hexokinase activity (HK2 isoform) and basolateral glucose transporter (GLUT2), as observed in the proximal jejunum, could account for such a site-specific effect of suckling.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 632
Author(s):  
Aihua Wang ◽  
Chao Ma ◽  
Hongye Ma ◽  
Zhilang Qiu ◽  
Xiaopeng Wen

Pitaya (Hylocereus polyrhizus L.) is highly tolerant to drought stress. Elucidating the response mechanism of pitaya to drought will substantially contribute to improving crop drought tolerance. In the present study, the physiological and proteomic responses of the pitaya cultivar ‘Zihonglong’ were compared between control seedlings and seedlings exposed to drought stress (−4.9 MPa) induced by polyethylene glycol for 7 days. Drought stress obviously enhanced osmolyte accumulation, lipid peroxidation, and antioxidant enzyme activities. Proteomic data revealed drought stress activated several pathways in pitaya, including carbohydrate and energy metabolism at two drought stress treatment time-points (6 h and 3 days). Other metabolic pathways, including those related to aspartate, glutamate, glutathione, and secondary metabolites, were induced more at 3 days than at 6 h, whereas photosynthesis and arginine metabolism were induced exclusively at 6 h. Overall, protein expression changes were consistent with the physiological responses, although there were some differences in the timing. The increases in soluble sugar contents mainly resulted from the degradation and transformation of insoluble carbohydrates. Differentially accumulated proteins in amino acid metabolism may be important for the conversion and accumulation of amino acids. GSH and AsA metabolism and secondary metabolism may play important roles in pitaya as enzymatic and nonenzymatic antioxidant systems. The enhanced carbohydrate and energy metabolism may provide the energy necessary for initiating the above metabolic pathways. The current study provided the first proteome profile of this species exposed to drought stress, and may clarify the mechanisms underlying the considerable tolerance of pitaya to drought stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monira Obaid ◽  
S. M. Nashir Udden ◽  
Prasanna Alluri ◽  
Subhrangsu S. Mandal

AbstractInflammation plays central roles in the immune response. Inflammatory response normally requires higher energy and therefore is associated with glucose metabolism. Our recent study demonstrates that lncRNA HOTAIR plays key roles in NF-kB activation, cytokine expression, and inflammation. Here, we investigated if HOTAIR plays any role in the regulation of glucose metabolism in immune cells during inflammation. Our results demonstrate that LPS-induced inflammation induces the expression of glucose transporter isoform 1 (Glut1) which controls the glucose uptake in macrophages. LPS-induced Glut1 expression is regulated via NF-kB activation. Importantly, siRNA-mediated knockdown of HOTAIR suppressed the LPS-induced expression of Glut1 suggesting key roles of HOTAIR in LPS-induced Glut1 expression in macrophage. HOTAIR induces NF-kB activation, which in turn increases Glut1 expression in response to LPS. We also found that HOTAIR regulates glucose uptake in macrophages during LPS-induced inflammation and its knockdown decreases LPS-induced increased glucose uptake. HOTAIR also regulates other upstream regulators of glucose metabolism such as PTEN and HIF1α, suggesting its multimodal functions in glucose metabolism. Overall, our study demonstrated that lncRNA HOTAIR plays key roles in LPS-induced Glut1 expression and glucose uptake by activating NF-kB and hence HOTAIR regulates metabolic programming in immune cells potentially to meet the energy needs during the immune response.


2021 ◽  
pp. 153537022110088
Author(s):  
Mingshan Xue ◽  
Yifeng Zeng ◽  
Runpei Lin ◽  
Hui-Qi Qu ◽  
Teng Zhang ◽  
...  

While there is no cure for chronic obstructive pulmonary disease (COPD), its progressive nature and the formidable challenge to manage its symptoms warrant a more extensive study of the pathogenesis and related mechanisms. A new emphasis on COPD study is the change of energy metabolism. For the first time, this study investigated the anaerobic and aerobic energy metabolic pathways in COPD using the metabolomic approach. Metabolomic analysis was used to investigate energy metabolites in 140 COPD patients. The significance of energy metabolism in COPD was comprehensively explored by the Global Initiative for Chronic Obstructive Lung Disease–GOLD grading, acute exacerbation vs. stable phase (either clinical stability or four-week stable phase), age group, smoking index, lung function, and COPD Assessment Test (CAT) score. Through comprehensive evaluation, we found that COPD patients have a significant imbalance in the aerobic and anaerobic energy metabolisms in resting state, and a high tendency of anaerobic energy supply mechanism that correlates positively with disease progression. This study highlighted the significance of anaerobic and low-efficiency energy supply pathways in lung injury and linked it to the energy-inflammation-lung ventilatory function and the motion limitation mechanism in COPD patients, which implies a novel therapeutic direction for this devastating disease.


Sign in / Sign up

Export Citation Format

Share Document