scholarly journals Ship Track Prediction Based on DLGWO-SVR

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yingyu Chen ◽  
Shenhua Yang ◽  
Yongfeng Suo ◽  
Minjie Zheng

To improve the accuracy of ship track prediction, the improved Grey Wolf Optimizer (GWO) and Support Vector Regression (SVR) models are incorporated for ship track prediction. The hunting strategy of dimensional learning was used to optimize the move search process of GWO and balance exploration and exploitation while maintaining population diversity. Selection and updating procedures keep GWO from being stuck in locally optimal solutions. The optimal parameters obtained by modified GWO were substituted into the SVR model to predict ship trajectory. Dimension Learning Grey Wolf Optimizer and Support Vector Regression (DLGWO-SVR), Grey Wolf Optimized Support Vector Regression (GWO-SVR), and Differential Evolution Grey Wolf Optimized Support Vector Regression (DEGWO-SVR) model trajectory prediction simulations were carried out. A comparison of the results shows that the trajectory prediction model based on DLGWO-SVR has higher prediction accuracy and meets the requirements of ship track prediction. The results of ship track prediction can not only improve the efficiency of marine traffic management but also prevent the occurrence of traffic accidents and maintain marine safety.

2021 ◽  
Vol 13 (24) ◽  
pp. 4966
Author(s):  
Ru Liu ◽  
Jianbing Peng ◽  
Yanqiu Leng ◽  
Saro Lee ◽  
Mahdi Panahi ◽  
...  

Landslides are one of the most frequent and important natural disasters in the world. The purpose of this study is to evaluate the landslide susceptibility in Zhenping County using a hybrid of support vector regression (SVR) with grey wolf optimizer (GWO) and firefly algorithm (FA) by frequency ratio (FR) preprocessed. Therefore, a landslide inventory composed of 140 landslides and 16 landslide conditioning factors is compiled as a landslide database. Among these landslides, 70% (98) landslides were randomly selected as the training dataset of the model, and the other landslides (42) were used to verify the model. The 16 landslide conditioning factors include elevation, slope, aspect, plan curvature, profile curvature, distance to faults, distance to rivers, distance to roads, sediment transport index (STI), stream power index (SPI), topographic wetness index (TWI), normalized difference vegetation index (NDVI), landslide, rainfall, soil and lithology. The conditioning factors selection and spatial correlation analysis were carried out by using the correlation attribute evaluation (CAE) method and the frequency ratio (FR) algorithm. The area under the receiver operating characteristic curve (AUROC) and kappa data of the training dataset and validation dataset are used to evaluate the prediction ability and the relationship between the advantages and disadvantages of landslide susceptibility maps. The results show that the SVR-GWO model (AUROC = 0.854) has the best performance in landslide spatial prediction, followed by the SVR-FA (AUROC = 0.838) and SVR models (AUROC = 0.818). The hybrid models of SVR-GWO and SVR-FA improve the performance of the single SVR model, and all three models have good prospects for regional-scale landslide spatial modeling.


Sign in / Sign up

Export Citation Format

Share Document