scholarly journals Deciphering Pharmacological Mechanism of Buyang Huanwu Decoction for Spinal Cord Injury by Network Pharmacology Approach

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Zhencheng Xiong ◽  
Feng Yang ◽  
Wenhao Li ◽  
Xiangsheng Tang ◽  
Haoni Ma ◽  
...  

Objective. The purpose of this study was to investigate the mechanism of action of the Chinese herbal formula Buyang Huanwu Decoction (BYHWD), which is commonly used to treat nerve injuries, in the treatment of spinal cord injury (SCI) using a network pharmacology method. Methods. BYHWD-related targets were obtained by mining the TCMSP and BATMAN-TCM databases, and SCI-related targets were obtained by mining the DisGeNET, TTD, CTD, GeneCards, and MalaCards databases. The overlapping targets of the abovementioned targets may be potential therapeutic targets for BYHWD anti-SCI. Subsequently, we performed protein-protein interaction (PPI) analysis, screened the hub genes using Cytoscape software, performed Gene Ontology (GO) annotation and KEGG pathway enrichment analysis, and finally achieved molecular docking between the hub proteins and key active compounds. Results. The 189 potential therapeutic targets for BYHWD anti-SCI were overlapping targets of 744 BYHWD-related targets and 923 SCI-related targets. The top 10 genes obtained subsequently included AKT1, IL6, MAPK1, TNF, TP53, VEGFA, CASP3, ALB, MAPK8, and JUN. Fifteen signaling pathways were also screened out after enrichment analysis and literature search. The results of molecular docking of key active compounds and hub target proteins showed a good binding affinity for both. Conclusion. This study shows that BYHWD anti-SCI is characterized by a multicomponent, multitarget, and multipathway synergy and provides new insights to explore the specific mechanisms of BYHWD against SCI.

2020 ◽  
Author(s):  
Rong-Bin Chen ◽  
Ying-Dong Yang ◽  
Kai Sun ◽  
Shan Liu ◽  
Wei Guo ◽  
...  

Abstract Background: Postmenopausal osteoporosis (PMOP) is a global chronic and metabolic bone disease, which poses huge challenges to individuals and society. Ziyin Tongluo Formula (ZYTLF) has been proved effective in the treatment of PMOP. However, the material basis and mechanism of ZYLTF against PMOP have not been thoroughly elucidated.Methods: Online databases were used to identify the active ingredients of ZYTLF and corresponding putative targets. Genes associated with PMOP were mined, and then mapped with the putative targets to obtain overlapping genes. Multiple networks were constructed and analyzed, from which the key genes were selected. The key genes were imported to the DAVID database to performs GO and KEGG pathway enrichment analysis. Finally, AutoDock Tools and other software were used for molecular docking of core compounds and key proteins. Results: Ninety-two active compounds of ZYTLF corresponded to 243 targets, with 129 target genes interacting with PMOP, and 50 key genes were selected. Network analysis showed the top 5 active ingredients including quercetin, kaempferol, luteolin, scutellarein, and formononetin., and the top 50 key genes such as VEGFA, MAPK8, AKT1, TNF, ESR1. Enrichment analysis uncovered two significant types of KEGG pathways in PMOP, hormone-related signaling pathways (estrogen , prolactin, and thyroid hormone signaling pathway) and inflammation-related pathways (TNF, PI3K-Akt, and MAPK signaling pathway). Moreover, molecular docking analysis verified that the main active compounds were tightly bound to the core proteins, further confirming the anti-PMOP effects. Conclusions: Based on network pharmacology and molecular docking technology, this study initially revealed the mechanisms of ZYTLF on PMOP, which involves multiple targets and multiple pathways.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zhencheng Xiong ◽  
Can Zheng ◽  
Yanan Chang ◽  
Kuankuan Liu ◽  
Li Shu ◽  
...  

Objective. The purpose of this work is to study the mechanism of action of Duhuo Jisheng Decoction (DHJSD) in the treatment of osteoporosis based on the methods of bioinformatics and network pharmacology. Methods. In this study, the active compounds of each medicinal ingredient of DHJSD and their corresponding targets were obtained from TCMSP database. Osteoporosis was treated as search query in GeneCards, MalaCards, DisGeNET, Therapeutic Target Database (TTD), Comparative Toxicogenomics Database (CTD), and OMIM databases to obtain disease-related genes. The overlapping targets of DHJSD and osteoporosis were identified, and then GO and KEGG enrichment analysis were performed. Cytoscape was employed to construct DHJSD-compounds-target genes-osteoporosis network and protein-protein interaction (PPI) network. CytoHubba was utilized to select the hub genes. The activities of binding of hub genes and key components were confirmed by molecular docking. Results. 174 active compounds and their 205 related potential targets were identified in DHJSD for the treatment of osteoporosis, including 10 hub genes (AKT1, ALB, IL6, MAPK3, VEGFA, JUN, CASP3, EGFR, MYC, and EGF). Pathway enrichment analysis of target proteins indicated that osteoclast differentiation, AGE-RAGE signaling pathway in diabetic complications, Wnt signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, calcium signaling pathway, and TNF signaling pathway were the specifically major pathways regulated by DHJSD against osteoporosis. Further verification based on molecular docking results showed that the small molecule compounds (Quercetin, Kaempferol, Beta-sitosterol, Beta-carotene, and Formononetin) contained in DHJSD generally have excellent binding affinity to the macromolecular target proteins encoded by the top 10 genes. Conclusion. This study reveals the characteristics of multi-component, multi-target, and multi-pathway of DHJSD against osteoporosis and provides novel insights for verifying the mechanism of DHJSD in the treatment of osteoporosis.


Author(s):  
Qiguo Wu ◽  
Yeqing Hu

Background: Diabetes mellitus is one of the most common endocrine metabolic disorder diseases. The application of herbal medicine to control glucose levels and improve insulin action might be a useful approach in the treatment of diabetes. Mulberry leaves (ML) has been reported to exert important activities of anti-diabetic. Objective: In this work, we aimed to explore the multi-targets and multi-pathways regulatory molecular mechanism of Mulberry leaves (ML, Morus alba Linne) acting on diabetes. Methods: Identification of active compounds of Mulberry leaves using Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Bioactive components were screened by FAF-Drugs4 website (Free ADME-Tox Filtering Tool). The targets of bioactive components were predicted from SwissTargetPrediction website, and the diabetes related targets were screened from GeneCards database. The common targets of ML and diabetes are used for Gene Ontology (GO) and pathway enrichment analysis. The visualization networks were constructed by Cytoscape 3.7.1 software. The construction of biological networks were performed to analyze the mechanisms as follows: (1) Compound-Target network; (2) Common target-Compound network; (3) Common targets protein interaction network; (4) Compound-Diabetes protein-protein interactions (PPI) network; (5) Target-Pathway network; (6) Compound-Target-Pathway network. At last, the prediction results of network pharmacology were verified by molecular docking method. Results: 17 active components were obtained by TCMSP database and FAF-Drugs4 website. 51 potential targets (11 common targets and 40 associated indirect targets) were obtained and used to build the PPI network by String database. Furthermore, the potential targets were used to GO and pathway enrichment analysis. 8 key active compounds (quercetin, Iristectorigenin A, 4-Prenylresveratrol, Moracin H, Moracin C, Isoramanone, Moracin E and Moracin D) and 8 key targets (AKT1, IGF1R, EIF2AK3, PPARG, AGTR1, PPARA, PTPN1 and PIK3R1) were obtained to play major roles in Mulberry leaf acting on diabetes. And the signal pathways involved in the mechanisms mainly include AMPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, insulin signaling pathway and insulin resistance. The molecular docking results show that the 8 key active compounds have good affinity with the key target of AKT1, and the 5 key targets (IGF1R, EIF2AK3, PPARG, PPARA and PTPN1) have better affinity than AKT1 with the key compound of quercetin. Conclusion: Based on network pharmacology and molecular docking of this work provided an important systematic and visualized basis for further understanding the synergy mechanism of ML acting on diabetes.


2021 ◽  
Vol 16 (12) ◽  
pp. 1934578X2110592
Author(s):  
Yi Wen Liu ◽  
Ai Xia Yang ◽  
Li Lu ◽  
Tie Hua Huang

Objective: To explore the potential mechanism of Sini jia Renshen Decoction (SJRD) in the treatment of COVID-19 based on network pharmacology and molecular docking. Methods: The active compounds and potential therapeutic targets of SJRD were collected through the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). Then a string database was used to build a protein–protein interactions (PPI) network between proteins, and use the David database to perform gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on core targets. Then we used Cytoscape software to construct an active ingredients-core target-signaling pathway network, and finally the active ingredients of SJRD were molecularly docked with the core targets to predict the mechanism of SJRD in the treatment of COVID-19. Results: A total of 136 active compounds, 51 core targets and 93 signaling pathways were selected. Molecular docking results revealed that quercetin, 3,22-dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid, 18α-hydroxyglycyrrhetic acid, gomisin B and ignavine had considerable binding ability with ADRB2, PRKACA, DPP4, PIK3CG and IL6. Conclusions: This study preliminarily explored the mechanism of multiple components,multiple targets,and multiple pathways of SJRD in the treatment of COVID-19 by network pharmacology.


2021 ◽  
Vol 339 ◽  
pp. 113612
Author(s):  
Claudio Pizzolato ◽  
Mehmet A. Gunduz ◽  
Dinesh Palipana ◽  
Jingnan Wu ◽  
Gary Grant ◽  
...  

Ibrain ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 24-33
Author(s):  
Yi‐Bo Wang ◽  
Qiu‐Lin Wang ◽  
Hao Yuan ◽  
Min Sai ◽  
Zhong‐Fu Zuo ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Minglong Guan ◽  
Lan Guo ◽  
Hengli Ma ◽  
Huimei Wu ◽  
Xiaoyun Fan

Rosmarinic acid (RosA) is a natural phenolic acid compound, which is mainly extracted from Labiatae and Arnebia. At present, there is no systematic analysis of its mechanism. Therefore, we used the method of network pharmacology to analyze the mechanism of RosA. In our study, PubChem database was used to search for the chemical formula and the Chemical Abstracts Service (CAS) number of RosA. Then, the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to evaluate the pharmacodynamics of RosA, and the Comparative Toxicogenomics Database (CTD) was used to identify the potential target genes of RosA. In addition, the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes were carried out by using the web-based gene set analysis toolkit (WebGestalt). At the same time, we uploaded the targets to the STRING database to obtain the protein interaction network. Then, we carried out a molecular docking about targets and RosA. Finally, we used Cytoscape to establish a visual protein-protein interaction network and drug-target-pathway network and analyze these networks. Our data showed that RosA has good biological activity and drug utilization. There are 55 target genes that have been identified. Then, the bioinformatics analysis and network analysis found that these target genes are closely related to inflammatory response, tumor occurrence and development, and other biological processes. These results demonstrated that RosA can act on a variety of proteins and pathways to form a systematic pharmacological network, which has good value in drug development and utilization.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Mengshi Tang ◽  
Xi Xie ◽  
Pengji Yi ◽  
Jin Kang ◽  
Jiafen Liao ◽  
...  

Objective. To explore the main components and unravel the potential mechanism of simiao pill (SM) on rheumatoid arthritis (RA) based on network pharmacological analysis and molecular docking. Methods. Related compounds were obtained from TCMSP and BATMAN-TCM database. Oral bioavailability and drug-likeness were then screened by using absorption, distribution, metabolism, and excretion (ADME) criteria. Additionally, target genes related to RA were acquired from GeneCards and OMIM database. Correlations about SM-RA, compounds-targets, and pathways-targets-compounds were visualized through Cytoscape 3.7.1. The protein-protein interaction (PPI) network was constructed by STRING. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed via R packages. Molecular docking analysis was constructed by the Molecular Operating Environment (MOE). Results. A total of 72 potential compounds and 77 associated targets of SM were identified. The compounds-targets network analysis indicated that the 6 compounds, including quercetin, kaempferol, baicalein, wogonin, beta-sitosterol, and eugenol, were linked to ≥10 target genes, and the 10 target genes (PTGS1, ESR1, AR, PGR, CHRM3, PPARG, CHRM2, BCL2, CASP3, and RELA) were core target genes in the network. Enrichment analysis indicated that PI3K-Akt, TNF, and IL-17 signaling pathway may be a critical signaling pathway in the network pharmacology. Molecular docking showed that quercetin, kaempferol, baicalein, and wogonin have good binding activity with IL6, VEGFA, EGFR, and NFKBIA targets. Conclusion. The integrative investigation based on bioinformatics/network topology strategy may elaborate on the multicomponent synergy mechanisms of SM against RA and provide the way out to develop new combination medicines for RA.


Sign in / Sign up

Export Citation Format

Share Document