scholarly journals Lens Learning Sparrow Search Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chengtian Ouyang ◽  
Donglin Zhu ◽  
Yaxian Qiu

In this paper, a lens learning sparrow search algorithm (LLSSA) is proposed to improve the defects of the new sparrow search algorithm, which is random and easy to fall into local optimum. The algorithm has achieved good results in function optimization and has planned a safer and less costly path to the three-dimensional UAV path planning. In the discoverer stage, the algorithm introduces the reverse learning strategy based on the lens principle to improve the search range of sparrow individuals and then proposes a variable spiral search strategy to make the follower's search more detailed and flexible. Finally, it combines the simulated annealing algorithm to judge and obtain the optimal solution. Through 15 standard test functions, it is verified that the improved algorithm has strong search ability and mining ability. At the same time, the improved algorithm is applied to the path planning of 3D complex terrain, and a clear, simple, and safe route is found, which verifies the effectiveness and practicability of the improved algorithm.

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Chengtian Ouyang ◽  
Donglin Zhu ◽  
Fengqi Wang

This paper solves the drawbacks of traditional intelligent optimization algorithms relying on 0 and has good results on CEC 2017 and benchmark functions, which effectively improve the problem of algorithms falling into local optimality. The sparrow search algorithm (SSA) has significant optimization performance, but still has the problem of large randomness and is easy to fall into the local optimum. For this reason, this paper proposes a learning sparrow search algorithm, which introduces the lens reverse learning strategy in the discoverer stage. The random reverse learning strategy increases the diversity of the population and makes the search method more flexible. In the follower stage, an improved sine and cosine guidance mechanism is introduced to make the search method of the discoverer more detailed. Finally, a differential-based local search is proposed. The strategy is used to update the optimal solution obtained each time to prevent the omission of high-quality solutions in the search process. LSSA is compared with CSSA, ISSA, SSA, BSO, GWO, and PSO in 12 benchmark functions to verify the feasibility of the algorithm. Furthermore, to further verify the effectiveness and practicability of the algorithm, LSSA is compared with MSSCS, CSsin, and FA-CL in CEC 2017 test function. The simulation results show that LSSA has good universality. Finally, the practicability of LSSA is verified by robot path planning, and LSSA has good stability and safety in path planning.


2021 ◽  
Vol 2021 ◽  
pp. 1-31
Author(s):  
Shaoqiang Yan ◽  
Ping Yang ◽  
Donglin Zhu ◽  
Wanli Zheng ◽  
Fengxuan Wu

This paper solves the shortcomings of sparrow search algorithm in poor utilization to the current individual and lack of effective search, improves its search performance, achieves good results on 23 basic benchmark functions and CEC 2017, and effectively improves the problem that the algorithm falls into local optimal solution and has low search accuracy. This paper proposes an improved sparrow search algorithm based on iterative local search (ISSA). In the global search phase of the followers, the variable helix factor is introduced, which makes full use of the individual’s opposite solution about the origin, reduces the number of individuals beyond the boundary, and ensures the algorithm has a detailed and flexible search ability. In the local search phase of the followers, an improved iterative local search strategy is adopted to increase the search accuracy and prevent the omission of the optimal solution. By adding the dimension by dimension lens learning strategy to scouters, the search range is more flexible and helps jump out of the local optimal solution by changing the focusing ability of the lens and the dynamic boundary of each dimension. Finally, the boundary control is improved to effectively utilize the individuals beyond the boundary while retaining the randomness of the individuals. The ISSA is compared with PSO, SCA, GWO, WOA, MWOA, SSA, BSSA, CSSA, and LSSA on 23 basic functions to verify the optimization performance of the algorithm. In addition, in order to further verify the optimization performance of the algorithm when the optimal solution is not 0, the above algorithms are compared in CEC 2017 test function. The simulation results show that the ISSA has good universality. Finally, this paper applies ISSA to PID parameter tuning and robot path planning, and the results show that the algorithm has good practicability and effect.


2018 ◽  
Vol 228 ◽  
pp. 01010
Author(s):  
Miaomiao Wang ◽  
Zhenglin Li ◽  
Qing Zhao ◽  
Fuyuan Si ◽  
Dianfang Huang

The classical ant colony algorithm has the disadvantages of initial search blindness, slow convergence speed and easy to fall into local optimum when applied to mobile robot path planning. This paper presents an improved ant colony algorithm in order to solve these disadvantages. First, the algorithm use A* search algorithm for initial search to generate uneven initial pheromone distribution to solve the initial search blindness problem. At the same time, the algorithm also limits the pheromone concentration to avoid local optimum. Then, the algorithm optimizes the transfer probability and adopts the pheromone update rule of "incentive and suppression strategy" to accelerate the convergence speed. Finally, the algorithm builds an adaptive model of pheromone coefficient to make the pheromone coefficient adjustment self-adaptive to avoid falling into a local minimum. The results proved that the proposed algorithm is practical and effective.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Li Mao ◽  
Yu Mao ◽  
Changxi Zhou ◽  
Chaofeng Li ◽  
Xiao Wei ◽  
...  

Artificial bee colony (ABC) algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC) algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Zhao ◽  
Zhicheng Jia ◽  
Lei Chen ◽  
Yanju Guo

Backtracking search algorithm (BSA) is a relatively new evolutionary algorithm, which has a good optimization performance just like other population-based algorithms. However, there is also an insufficiency in BSA regarding its convergence speed and convergence precision. For solving the problem shown in BSA, this article proposes an improved BSA named COBSA. Enlightened by particle swarm optimization (PSO) algorithm, population control factor is added to the variation equation aiming to improve the convergence speed of BSA, so as to make algorithm have a better ability of escaping the local optimum. In addition, enlightened by differential evolution (DE) algorithm, this article proposes a novel evolutionary equation based on the fact that the disadvantaged group will search just around the best individual chosen from previous iteration to enhance the ability of local search. Simulation experiments based on a set of 18 benchmark functions show that, in general, COBSA displays obvious superiority in convergence speed and convergence precision when compared with BSA and the comparison algorithms.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772093274 ◽  
Author(s):  
Xiao-Xue Sun ◽  
Jeng-Shyang Pan ◽  
Shu-Chuan Chu ◽  
Pei Hu ◽  
Ai-Qing Tian

In modern times, swarm intelligence has played an increasingly important role in finding an optimal solution within a search range. This study comes up with a novel solution algorithm named QUasi-Affine TRansformation-Pigeon-Inspired Optimization Algorithm, which uses an evolutionary matrix in QUasi-Affine TRansformation Evolutionary Algorithm for the Pigeon-Inspired Optimization Algorithm that was designed using the homing behavior of pigeon. We abstract the pigeons into particles of no quality and improve the learning strategy of the particles. Having different update strategies, the particles get more scientific movement and space exploration on account of adopting the matrix of the QUasi-Affine TRansformation Evolutionary algorithm. It increases the versatility of the Pigeon-Inspired Optimization algorithm and makes the Pigeon-Inspired Optimization less simple. This new algorithm effectively improves the shortcoming that is liable to fall into local optimum. Under a number of benchmark functions, our algorithm exhibits good optimization performance. In wireless sensor networks, there are still some problems that need to be optimized, for example, the error of node positioning can be further reduced. Hence, we attempt to apply the proposed optimization algorithm in terms of positioning, that is, integrating the QUasi-Affine TRansformation-Pigeon-Inspired Optimization algorithm into the Distance Vector–Hop algorithm. Simultaneously, the algorithm verifies its optimization ability by node location. According to the experimental results, they demonstrate that it is more outstanding than the Pigeon-Inspired Optimization algorithm, the QUasi-Affine TRansformation Evolutionary algorithm, and particle swarm optimization algorithm. Furthermore, this algorithm shows up minor errors and embodies a much more accurate location.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Xingwang Huang ◽  
Chaopeng Li ◽  
Yunming Pu ◽  
Bingyan He

Quantum-behaved bat algorithm with mean best position directed (QMBA) is a novel variant of bat algorithm (BA) with good performance. However, the QMBA algorithm generates all stochastic coefficients with uniform probability distribution, which can only provide a relatively small search range, so it still faces a certain degree of premature convergence. In order to help bats escape from the local optimum, this article proposes a novel Gaussian quantum bat algorithm with mean best position directed (GQMBA), which applies Gaussian probability distribution to generate random number sequences. Applying Gaussian distribution instead of uniform distribution to generate random coefficients in GQMBA is an effective technique to promote the performance in avoiding premature convergence. In this article, the combination of QMBA and Gaussian probability distribution is applied to solve the numerical function optimization problem. Nineteen benchmark functions are employed and compared with other algorithms to evaluate the accuracy and performance of GQMBA. The experimental results show that, in most cases, the proposed GQMBA algorithm can provide better search performance.


2017 ◽  
Vol 29 (4) ◽  
pp. 1103-1123 ◽  
Author(s):  
Qixiang Liao ◽  
Shudao Zhou ◽  
Hanqing Shi ◽  
Weilai Shi

In order to address with the problem of the traditional or improved cuckoo search (CS) algorithm, we propose a dynamic adaptive cuckoo search with crossover operator (DACS-CO) algorithm. Normally, the parameters of the CS algorithm are kept constant or adapted by empirical equation that may result in decreasing the efficiency of the algorithm. In order to solve the problem, a feedback control scheme of algorithm parameters is adopted in cuckoo search; Rechenberg’s 1/5 criterion, combined with a learning strategy, is used to evaluate the evolution process. In addition, there are no information exchanges between individuals for cuckoo search algorithm. To promote the search progress and overcome premature convergence, the multiple-point random crossover operator is merged into the CS algorithm to exchange information between individuals and improve the diversification and intensification of the population. The performance of the proposed hybrid algorithm is investigated through different nonlinear systems, with the numerical results demonstrating that the method can estimate parameters accurately and efficiently. Finally, we compare the results with the standard CS algorithm, orthogonal learning cuckoo search algorithm (OLCS), an adaptive and simulated annealing operation with the cuckoo search algorithm (ACS-SA), a genetic algorithm (GA), a particle swarm optimization algorithm (PSO), and a genetic simulated annealing algorithm (GA-SA). Our simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Chengtian Ouyang ◽  
Yaxian Qiu ◽  
Donglin Zhu

The sparrow search algorithm is a new type of swarm intelligence optimization algorithm with better effect, but it still has shortcomings such as easy to fall into local optimality and large randomness. In order to solve these problems, this paper proposes an adaptive spiral flying sparrow search algorithm (ASFSSA), which reduces the probability of getting stuck into local optimum, has stronger optimization ability than other algorithms, and also finds the shortest and more stable path in robot path planning. First, the tent mapping based on random variables is used to initialize the population, which makes the individual position distribution more uniform, enlarges the workspace, and improves the diversity of the population. Then, in the discoverer stage, the adaptive weight strategy is integrated with Levy flight mechanism, and the fusion search method becomes extensive and flexible. Finally, in the follower stage, a variable spiral search strategy is used to make the search scope of the algorithm more detailed and increase the search accuracy. The effectiveness of the improved algorithm ASFSSA is verified by 18 standard test functions. At the same time, ASFSSA is applied to robot path planning. The feasibility and practicability of ASFSSA are verified by comparing the algorithms in the raster map planning routes of two models.


2021 ◽  
Vol 9 (3-4) ◽  
pp. 89-99
Author(s):  
Ivona Brajević ◽  
Miodrag Brzaković ◽  
Goran Jocić

Beetle antennae search (BAS) algorithm is a newly proposed single-solution based metaheuristic technique inspired by the beetle preying process. Although BAS algorithm has shown good search abilities, it can be easily trapped into local optimum when it is used to solve hard optimization problems. With the intention to overcome this drawback, this paper presents a population-based beetle antennae search (PBAS) algorithm for solving integer programming problems.  This method employs the population's capability to search diverse regions of the search space to provide better guarantee for finding the optimal solution. The PBAS method was tested on nine integer programming problems and one mechanical design problem. The proposed algorithm was compared to other state-of-the-art metaheuristic techniques. The comparisons show that the proposed PBAS algorithm produces better results for majority of tested problems.  


Sign in / Sign up

Export Citation Format

Share Document