scholarly journals Improving the Tracking Performance under Nonlinear Time-Varying Constraints in Motion Control Applications: From Theoretical Servo Model to Experimental Validation

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hung Nguyen ◽  
Thanh Phuong Nguyen ◽  
Ha Quang Thinh Ngo

In the high-accuracy control of an AC machine, the knowledge of pure system parameters, with no deviation in drive coefficients and no disturbance or other nonlinear components, is a difficult issue for operators, even though it is occasionally nonviable. To overcome these troubles, this paper introduces a robust adaptation strategy based on pseudo fuzzy logic and sliding mode control (PFSMC) for an AC servo drive subject to uncertainties and/or external disturbance. Owing to the robustness of the SMC technique, the reduced sensitivity to uncertainties, and the enhanced resistance to disturbances from the pseudo fuzzy mechanism, this control algorithm can guarantee not only system stability but also the improvement of tracking errors in the steady state. To validate the design efficiency of PFSMC, both simulation and laboratory tests of the proposed scheme and a conventional PID scheme were performed to compare them as follows. In a computer environment, test cases with and without certainties were implemented with two controllers to visualize the comparative responses. Then, the two control methods were integrated into a real-world hardware platform to acquire practical outcomes. From these results, it can be noted that our successful approach showed a feasible, effective, and robust performance in AC drive.

2020 ◽  
Vol 10 (18) ◽  
pp. 6219
Author(s):  
Zhongyi Guo ◽  
Haifeng Ma ◽  
Qinghua Song

The control design for many industrial applications requires compensation for parameter uncertainty and external disturbance. Reported in many previous works, the parameter uncertainty and external disturbance are combined as a lumped disturbance, which is assumed to be smooth and bounded. However, for a discrete-time sliding mode control (DSMC) system, the above assumption may not hold. Here, the parameter uncertainty, along with its compensation in the DSMC system, are reconsidered and reevaluated. The influence of parameter uncertainty on the closed-loop system stability is first addressed. Then, the comparative investigation of the performance of six state-of-the-art disturbance compensators for parameter uncertainty compensation is conducted. Simulation results show that none of these compensators can effectively observe and compensate for the parameter uncertainty.


2011 ◽  
Vol 143-144 ◽  
pp. 108-113
Author(s):  
Yu Hui Zhang ◽  
Chang Bing Han ◽  
Tian Yun Li

In this paper, a new ESO sliding mode controller that can improve the system stability was designed ,as to the strong nonlinear of generator excitation system and the characteristics of vulnerable to external disturbance, which application of feedback linearization, ESO and sliding model variable structure control theory. Firstly, it realized to linearization for nonlinear mould based on the feedback linearization theory, then it provide dynamic compensation for generator excitation system through constructing extended state observation device (ESO). The methods of factorial is used to design sliding mode switch function, theoretically, it guarantee generator rotor equation with expectations of poles. In order to reduce chattering ,through index near rate and quasi sliding mode control dynamic method to get the sliding control rate, it make the form conciseness, The results of simulation show that the speed , accuracy and stability of system are significantly improved by controller in dynamic and static . Introduction


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110033
Author(s):  
Javad Mostafaee ◽  
Saleh Mobayen ◽  
Behrouz Vaseghi ◽  
Mohammad Vahedi ◽  
Afef Fekih

This paper proposes a novel exponential hyper–chaotic system with complex dynamic behaviors. It also analyzes the chaotic attractor, bifurcation diagram, equilibrium points, Poincare map, Kaplan–Yorke dimension, and Lyapunov exponent behaviors. A fast terminal sliding mode control scheme is then designed to ensure the fast synchronization and stability of the new exponential hyper–chaotic system. Stability analysis was performed using the Lyapunov stability theory. One of the main features of the proposed controller is the finite time stability of the terminal sliding surface designed with high–order power function of error and derivative of error. The approach was implemented for image cryptosystem. Color image encryption was carried out to confirm the performance of the new hyper–chaotic system. For image encryption, the DNA encryption-based RGB algorithm was used. Performance assessment of the proposed approach confirmed the ability of the proposed hyper–chaotic system to increase the security of image encryption.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 33
Author(s):  
Romina Zarrabi Ekbatani ◽  
Ke Shao ◽  
Jasim Khawwaf ◽  
Hai Wang ◽  
Jinchuan Zheng ◽  
...  

The ionic polymer metal composite (IPMC) actuator is a kind of soft actuator that can work for underwater applications. However, IPMC actuator control suffers from high nonlinearity due to the existence of inherent creep and hysteresis phenomena. Furthermore, for underwater applications, they are highly exposed to parametric uncertainties and external disturbances due to the inherent characteristics and working environment. Those factors significantly affect the positioning accuracy and reliability of IPMC actuators. Hence, feedback control techniques are vital in the control of IPMC actuators for suppressing the system uncertainty and external disturbance. In this paper, for the first time an adaptive full-order recursive terminal sliding-mode (AFORTSM) controller is proposed for the IPMC actuator to enhance the positioning accuracy and robustness against parametric uncertainties and external disturbances. The proposed controller incorporates an adaptive algorithm with terminal sliding mode method to release the need for any prerequisite bound of the disturbance. In addition, stability analysis proves that it can guarantee the tracking error to converge to zero in finite time in the presence of uncertainty and disturbance. Experiments are carried out on the IPMC actuator to verify the practical effectiveness of the AFORTSM controller in comparison with a conventional nonsingular terminal sliding mode (NTSM) controller in terms of smaller tracking error and faster disturbance rejection.


Author(s):  
Dalong Tian ◽  
Jianguo Guo

This study aims to develop an advanced integral terminal sliding-mode robust control method using a disturbance observer (DO) to suppress the forced vibration of a large space intelligent truss structure (LSITS). First, the dynamics of the electromechanical coupling of the piezoelectric stack actuator and the LSITS, based on finite element and Lagrangian methods, are established. Subsequently, to constrict the vibration of the structure, a novel integral terminal sliding-mode control (ITSMC) law for the DO is used to estimate the parameter perturbation of the LSITS based on a continuous external disturbance. Simulation results show that, under a forced vibration and compared with the ITSMC system without a DO, the displacement amplitude of the ITSMC system with the DO is effectively reduced. In the case where the model parameters of the LSITS deviate by ±50%, and an unknown continuous external disturbance exists, the control system with the DO can adequately attenuate the structural vibration and realize robust control. Concurrently, the voltage of the employed piezoelectric stack actuator is reduced, and voltage jitter is alleviated.


2005 ◽  
Vol 128 (2) ◽  
pp. 352-358 ◽  
Author(s):  
C. Treesatayapun ◽  
S. Uatrongjit

This paper presents a direct adaptive controller for chaotic systems. The proposed adaptive controller is constructed using the network called fuzzy rules emulated network (FREN). FREN’s structure is based on human knowledge in the form of fuzzy rules. Parameter adaptation algorithm based on the steepest descent method is presented to fine tune the controller’s performance. To improve the system stability, the modified sliding mode algorithm is applied to estimate the upper and lower bounds of the control effort. The suitable control effort is generated by FREN and kept within these bounds. Some computer simulations of using the controller to control the Hénon map have been performed to demonstrate the performance of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document