scholarly journals Two-Layer Optimization Algorithm for Multi-UAV Conflict Resolution considering Individual Fairness

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xusheng Gan ◽  
Honghong Zhang ◽  
Yarong Wu ◽  
Jingjuan Sun ◽  
Guhao Zhao ◽  
...  

In order to solve the unfair individual payment costs problem in the low-altitude unmanned aerial vehicle (UAV) conflict resolution process, a multi-UAV conflict resolution algorithm based on the cooperative game concept “coalition complaint value” is proposed. Firstly, based on the low-altitude multi-UAV conflict scene characteristics, according to the “coalition complaint value” concept, the UAV conflict resolution payment matrix is established. Secondly, combined with the advantages of the artificial potential field (APF) method and the genetic algorithm (GA), a hybrid solution strategy for conflict resolution based on APF-GA is proposed. The final simulation results show that the APF-GA hybrid solution strategy has the best efficiency by combining the three evaluation indicators of calculation time, feasibility, and system efficiency. The reliability of the proposed algorithm is verified based on the Monte Carlo algorithm. The solution strategy based on the cooperative game “coalition complaint value” can improve individual fairness to a certain extent. At the same time, it can achieve the rapid planning goal with priority drones at the expense of a small amount of overall benefits.

Algorithms ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 47
Author(s):  
Hao-xiang Chen ◽  
Ying Nan ◽  
Yi Yang

A real-time conflict resolution algorithm based on model predictive control (MPC) is introduced to address the flight conflict resolution problem in multi-UAV scenarios. Using a low-level controller, the UAV dynamic equations are abstracted into simpler unicycle kinematic equations. The neighboring UAVs exchange their predicted trajectories at each sample time to predict the conflicts. Then, under the predesignated resolution rule and strategy, decentralized coordination and cooperation are performed to resolve the predicted conflicts. The controller structure of the distributed nonlinear model predictive control (DNMPC) is designed to predict potential conflicts and calculate control variables for each UAV. Numerical simulations of multi-UAV coordination are performed to verify the performance of the proposed algorithm. Results demonstrate that the proposed algorithm can resolve the conflicts sufficiently in real time, while causing no further conflicts.


The navigation systems as part of the navigation complex of a high-precision unmanned aerial vehicle in conditions of different altitude flight are investigated. The working contours of the navigation complex with correction algorithms for an unmanned aerial vehicle during high-altitude and low-altitude flights are formed. Mathematical models of inertial navigation system errors used in non-linear and linear Kalman filters are presented. The results of mathematical modeling demonstrate the effectiveness of the working contours effectiveness of the navigation complex with correction algorithms. Keywords high-precision unmanned aerial vehicle; navigation complex; multi-altitude flight; work circuit; passive noises; Kalman filter; correction


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Can Yang ◽  
Junjie Zhang ◽  
Hongbo Li ◽  
Haiyang Yu ◽  
Yongzheng Xu

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Sha Gao ◽  
Shu Gan ◽  
Xiping Yuan ◽  
Rui Bi ◽  
Raobo Li ◽  
...  

Low-altitude unmanned aerial vehicle (UAV) photogrammetry combined with structure-from-motion (SFM) algorithms is the latest technological approach to imaging 3D stereo constructions. At present, derivative products have been widely used in landslide monitoring, landscape evolution, glacier movement, volume measurement, and landscape change detection. However, there is still a lack of research into the accuracy of 3D data positioning based on the structure-from-motion of unmanned aerial vehicle (UAV-SFM) technology, itself, which can affect the measurable effectiveness of the results in further applications of this technological approach. In this paper, validation work was carried out for the DJI Phantom 4 RTK UAV, for earth observation data related to 3D positioning accuracy. First, a test plot with a relatively stable surface was selected for repeated flight imaging observations. Specifically, three repeated flights were performed on the test plot to obtain three sorties of images; the structure from motion and multi-view stereo (SFM-MVS) key technology was used to process and construct a 3D scene model, and based on this model the digital surface model (DSM) and digital orthophoto map (DOM) data of the same plot with repeated observations were obtained. In order to check the level of 3D measurement accuracy of the UAV technology itself, a window selection-based method was used to sample the point cloud set data from the three-sortie repeat observation 3D model. The DSM and DOM data obtained from three repeated flights over the surface invariant test plots were used to calculate the repeat observation 3D point errors, taking into account the general methodology of redundant observation error analysis for topographic surveys. At the same time, to further analyze the limits of the UAV measurement technique, possible under equivalent observation conditions with the same processing environment, a difference model (DOD) was constructed for the DSM data from three sorties, to deepen the overall characterization of the differences between the DSMs obtained from repeated observations. The results of the experimental study concluded that both the analysis of the 3D point set measurements based on window sampling and the accuracy evaluation using the difference model were generally able to achieve a centimeter level of planimetric accuracy and vertical accuracy. In addition, the accuracy of the surface-stabilized hardened ground was better, overall, than the accuracy of the non-hardened ground. The results of this paper not only probe the measurement limits of this type of UAV, but also provide a quantitative reference for the accurate control and setting of an acquisition scheme of the UAV-based SfM-MVS method for geomorphological data acquisition and 3D reconstruction.


Author(s):  
Hai-shi Liu ◽  
Yu-xuan Sun ◽  
Nan Pan ◽  
Qi-yong Chen ◽  
Xiao-jue Guo ◽  
...  

In order to improve the patrol efficiency of border patrol drones, based on unmanned aerial vehicle (UAV) border patrol missions in multiple complex environments, this article proposes a whale algorithm based on chaos theory to plan patrol missions for multiple drones. First, according to the terrain the corresponding environmental model is established for the topography and then solved in layers to obtain the number of drones and other information that each base needs to send to the patrol area. Further, the use of drones with cameras and other detection equipment to patrol the scene information and images extract and transfer to the terminal in real time, and further detect suspicious persons and vehicles on the screen. The final simulation results show that the proposed scheme can be effectively applied to the planning of multi-UAV coordinated missions for border patrol.


Author(s):  
Jun Tang ◽  
Jiayi Sun ◽  
Cong Lu ◽  
Songyang Lao

Multi-unmanned aerial vehicle trajectory planning is one of the most complex global optimum problems in multi-unmanned aerial vehicle coordinated control. Results of recent research works on trajectory planning reveal persisting theoretical and practical problems. To mitigate them, this paper proposes a novel optimized artificial potential field algorithm for multi-unmanned aerial vehicle operations in a three-dimensional dynamic space. For all purposes, this study considers the unmanned aerial vehicles and obstacles as spheres and cylinders with negative electricity, respectively, while the targets are considered spheres with positive electricity. However, the conventional artificial potential field algorithm is restricted to a single unmanned aerial vehicle trajectory planning in two-dimensional space and usually fails to ensure collision avoidance. To deal with this challenge, we propose a method with a distance factor and jump strategy to resolve common problems such as unreachable targets and ensure that the unmanned aerial vehicle does not collide into the obstacles. The method takes companion unmanned aerial vehicles as the dynamic obstacles to realize collaborative trajectory planning. Besides, the method solves jitter problems using the dynamic step adjustment method and climb strategy. It is validated in quantitative test simulation models and reasonable results are generated for a three-dimensional simulated urban environment.


Sign in / Sign up

Export Citation Format

Share Document