scholarly journals In Vitro Assessment of the Cercaricidal Activity of Sida acuta Burm. F. and Sida rhombifolia Linn. (Malvaceae) Hydroethanolic Extracts, Cytotoxicity, and Phytochemical Studies

2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Ulrich Membe Femoe ◽  
Joseph Bertin Kadji Fassi ◽  
Hermine Boukeng Jatsa ◽  
Yannick Leonel Tchoffo ◽  
David Carel Amvame Nna ◽  
...  

Despite the global efforts, schistosomiasis remains a public health problem in several tropical and subtropical countries. One of the major challenges in the fight against schistosomiasis is the interruption of the parasite life cycle. Here, we evaluated the anticercarial, cytotoxicity, and phytochemical profiles of Sida acuta (HESa) and Sida rhombifolia (HESr) hydroethanolic extracts (Malvaceae). Schistosoma mansoni cercaria was collected from fifteen Biomphalaria pfeifferi-infected snails. Twenty-five cercariae were incubated in duplicate with different concentrations (31.25–1,000 μg/mL) of HESa or HESr. The cercaria viability was monitored at 30 min time intervals for 150 min, and the concentration-response curve of each plant extract was used to determine their respective lethal concentration 50 (LC50). Additionally, the cytotoxicity profile of each plant extract was evaluated on the Hepa 1–6 cell line at a concentration range of 15.625–1,000 µg/mL using the WST-8 assay method and its inhibitory concentration 50 (IC50) was calculated. Moreover, phytochemical characterization of each plant extract was carried out by HPLC-MS. Both extracts exhibited cercaricidal activity in a time- and concentration-dependent manner. At 30 min time point, HESa (LC50 = 28.41 ± 3.5 µg/mL) was more effective than HESr (LC50 = 172.42 ± 26.16 µg/mL) in killing S. mansoni cercariae. Regarding the cytotoxicity effect of both extracts, the IC50 of HESa (IC50 = 109.67 µg/mL) was lower than that of HESr (IC50 = 888.79 µg/mL). The selectivity index was 3.86 and 5.15 for HESa and HESr, respectively. Fifteen compounds were identified from HESa and HESr after HPLC-MS analysis. N-Feruloyltyramine, a polyphenol, and thamnosmonin, a coumarin, were identified in both extracts. HESa and HESr displayed cercaricidal activity and were not toxic on Hepa 1–6 cell line. Based on the selectivity index of these extracts, S. rhombifolia extract could be more effective on S. mansoni cercariae than S. acuta extract. This study could provide baseline information for further investigations aiming to develop plant-based alternative drugs against S. mansoni.

2014 ◽  
Vol 25 (3-4) ◽  
pp. 24-33
Author(s):  
O. I. Dzjuba ◽  
M. V. Yatsenko

The article deals with the history of the study and the current state of research of physiological and biochemical properties of the plant genus Sedum that are useful for human and has been used in folk medicine for many years. It was noticed that antioxidant properties of extracts from plants S. sarmentosum, S. sempervivoides, S. takesimense were caused by the presence of phenolic compounds. Methanol extract of plants S. takesimense exhibited strong scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals as well as significant inhibitory effects on lipid peroxidation and low density lipoprotein (LDL) oxidation induced by a metal ion Cu2+. Various immunomodulatory activities of various fractions of plants extracts (S. dendroideum, S. kamtschaticum, S. sarmentosum, S. telephium) are observed. It was shown that the ethanol extract of S. sarmentosum and it’s fractions suppressed specific antibody and cellular responses to ovalbumin in mice. The methanol extract of plants S. sarmentosum reduced the levels of anti-inflammatory markers, such as volume of exudates, number of polymorphonuclear leukocytes, suppressed nitric oxide synthesis in activated macrophages via suppressed induction of inducible nitric oxide synthase (iNOS). Polysaccharides fractions from plants S. telephium inducing productions of tumor necrosis factor alpha (TNF-α), increasing the intensity of phagocytosis in vitro and in vivo. Methanol extract from the whole part of S. kamtschaticum strongly inhibit PGE2 production from lipopolysaccharide-induced RAW 264.7 cells, a mouse macrophage cell line via modulating activity in gene expression of the enzyme cyclooxygenase-2 (COX-2). The methanol extract of plants S. sarmentosum and the major kaempferol glycosides from S. dendroideum have antinociceptive activity. It was noticed that anti-adipogenic activity of extracts from plants S. kamtschaticum were caused by inhibition of peroxisome-proliferator-activated receptor γ (PPARγ) expression and it’s dependent target genes, such as genes encoding adipocyte protein 2 (аР2), lipoprotein lipase (LPL), adiponectin and CD36. Polysaccharides fractions from S. telephium cause inhibition of cell adhesion of human fibroblast (MRC5) to laminin and fibronectin via interfere with integrin-mediated cell behaviour and they contributed to the role of polysaccharides in cell-matrix interaction. The methanol extract of plants S. sarmentosum exhibited a significant inhibitory activity in the chick embryo chorioallantoic membrane angiogenesis in a dose-dependent manner. The crude alkaloid fraction of S. sarmentosum caused a dose-dependent inhibition of cell proliferation on murine hepatoma cell line BNL CL.2 and human hepatoma cell line HepG2 without necrosis or apoptosis. Alkaloids from plants S. sarmentosum may improve survival of hepatoma patients via the inhibition of excessive growth of tumor cells. Plant’s juices have antiviral activity (S. sarmentosum, S. spurium, S. stahlii). Crude ethanol extract S. praealtum have spermicidal activity of the in mice and a relevant inhibitory effect of aqueous extract on human spermatozoa motility as well as an anti-fertilizing activity in rats. Hepatoprotective triterpenes, e.g., δ-amyrone, 3-epi-δ-amyrin, δ-amyrin and sarmentolin were isolated from S. sarmentosum. 2- and 2,6-substituted piperidine alkaloids (e.g., norsedamine, allosedridine, sedamine, allosedamine) are observed in plants S. acre, which in the presence of data on the use of pyridine and piperidine derivatives for treating neurodegenerative diseases (e.g., Alzheimer's disease), points on the promising research in this area. Taking into account that biologically active compounds are accumulated in the aboveground vegetative organs of plants of Sedum, the prospects of further study of the use of Sedum for the purposes of biotechnology and in the pharmaceutical industry becomes apparent. This work extends the existing views regarding the use of plants Sedum.


2019 ◽  
Vol 26 (12) ◽  
pp. 910-918
Author(s):  
Kamal U. Zaidi ◽  
Firoz N. Khan ◽  
Sharique A. Ali ◽  
Kausar P. Khan

Background: Melanin plays a crucial role in camouflage, social communication and protection against harmful ultraviolet radiations. Melanin is synthesized by melanocytes through melanogenesis and several intrinsic and extrinsic factors are involved during the process. Any change occuring in the normal melanogenesis process can cause severe pigmentation problems of hypopigmentation or hyperpigmentation. Objective: The present study is based on the evaluation of the effect of thymoquinone on melanogenesis and their possible mechanism of action using the B16F10 melanoma cell line for the production via blocking signaling pathways. Methods: Phase contrast microscopy, cell viability, tyrosinase activity, melanin content and western blot analysis were used in the present study. Results: In the present investigation, cultured melanocytes exhibit that the stimulation of melanin synthesis when treated with thymoquinone. Tyrosinase activity and melanin production in B16F10 melanoma cell line was increased in doze-dependent manner. In western blot, we investigated the involvement of the cAMP/PKA pathway in thymoquinone induced melanogenesis. It was observed protein kinase inhibitors PKA, PKC, PKB and MEK1 decreased the stimulatory effects of thymoquinone from 11.45- fold value to 8.312, 6.631, 4.51, and 7.211-fold value, respectively. However, the results also prove that thymoquinone may partially induce tyrosinase expression via PKA, PKB, PKC and MEK1 signaling pathways. Conclusion: The present finding proposed that thymoquinone is a protective challenger for melanogenesis and it might be useful for the treatment of hypopigmentary disorders.


2019 ◽  
Vol 15 (4) ◽  
pp. 415-426
Author(s):  
Avani B. Chokshi ◽  
Mahesh T. Chhabria ◽  
Pritesh R. Desai

Background:Squalene Synthase is one of the cholesterol biosynthetic pathway enzymes, inhibition of which produces potent lipid lowering action. A variety of chemical classes have been evaluated for its inhibition to provide alternate antihyperlipidemic agents to statins.Methods:A series of N-substituted-sulfomoyl-phenyl-amino carboxylic acid derivatives were designed through pharmacophore modelling as Squalene Synthase inhibitors. We report here the synthesis, characterization and in vitro pharmacological screening of the designed molecules as Squalene synthase inhibitors. The target molecules were synthesized by a simple procedure and each molecule was characterized by IR, Mass, 1HNMR and 13CNMR spectroscopic techniques. As a primary site of action for cholesterol biosynthesis is liver, each of the molecules were first screened for in vitro cytotoxicity over human hepatic cell line (HepG2) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method. The enzyme inhibition assay was performed on cell lysates prepared from HepG2 cells by Human Squalene Synthase ELISA kit, where test compounds were added in the nontoxic concentrations only.Results:Compound 5f was found to be most potent with the IC50 value of 11.91 µM. The CTC50 value for 5f on human hepatic cell line was > 1000 µM so it was considered that the compound was relatively safe and might be free of hepatotoxicity.Conclusion:From the results of our studies, it was observed that compounds with poly nuclear aromatic or hetero aromatic substituent on a side chain were more potent enzyme inhibitors and a distance of 4-5 atoms is optimum between amide nitrogen and hydroxyl group of carboxylic acid.


2018 ◽  
Vol 18 (4) ◽  
pp. 573-582 ◽  
Author(s):  
Khaled R.A. Abdellatif ◽  
Mostafa M. Elbadawi ◽  
Mohammed T. Elsaady ◽  
Amer A. Abd El-Hafeez ◽  
Takashi Fujimura ◽  
...  

Background: Some 2-thioxoimidazolidinones have been reported as anti-prostate and anti-breast cancer agents through their inhibitory activity on topoisomerase I that is considered as a potential chemotherapeutic target. Objective: A new series of 3,5-disubstituted-2-thioxoimidazolidinone derivatives 10a-f and their S-methyl analogs 11a-f were designed, synthesized and evaluated for cytotoxicity against human prostate cancer cell line (PC-3), human breast cancer cell line (MCF-7) and non-cancerous human lung fibroblast cell line (WI-38). </P><P> Results and Method: While compounds 10a-f showed a broad range of activities against PC-3 and MCF-7 cell lines (IC50 = 34.0 – 186.9 and 24.6 – 147.5 µM respectively), the S-methyl analogs 11a-f showed (IC50 = 22.7 – 198.5 and 16.9 – 188.2 µM respectively) in comparison with 5-fluorouracil (IC50 = 60.7 and 40.7 µM respectively). 11c (IC50 = 22.7 and 29.2 µM) and 11f (IC50 = 28.7 and 16.9 µM) were the most potent among all compounds against both PC-3 and MCF-7 respectively with no cytotoxicity against WI-38. Conclusion: The newly synthesized compounds showed good activity against PC-3 and MCF-7 cell lines in comparison with 5-fluorouracil. Compounds 11c and 11f bound with human topoisomerase I similar to its known inhibitors and significantly inhibited its DNA relaxation activity in a dose dependent manner which may rationalize their molecular mechanism as cytotoxic agents.


2020 ◽  
Vol 20 (6) ◽  
pp. 930-942 ◽  
Author(s):  
Imran Khan ◽  
Sadaf Mahfooz ◽  
Irfan A. Ansari

Background: In recent years, natural products have received great attention for cancer prevention owing to their various health benefits, noticeable lack of toxicity and side effects, and the limitations of chemotherapeutic agents. Andrographolide, a labdane diterpenoid is a principal bioactive constituent of Andrographis paniculata Nees, exhibits significant anticancer activity. Objective: The efficacy of andrographolide on colon cancer cells is yet to be elucidated completely. Therefore, we investigated the anticancer efficiency of andrographolide in colon cancer DLD1 cell line. Methods: Antiproliferative activity of andrographolide on DLD1 cells was evaluated by MTT assay, LDH release assay, morphological analysis and colony formation assay. Induction of apoptosis was determined by DAPI staining, Annexin V-FITC staining assay, and caspase-3 activation assay. Role of andrographolide induced cellular reactive oxygen species (ROS) and its association with apoptosis induction in DLD1 cells was elucidated by DCFDA dye. Synergistic ability of andrographolide with 5- fluorouracil (5-FU) and paclitaxel (PTX) was evaluated by MTT assay. Results: Results of the present study indicated that andrographolide declined cell viability of DLD1 cells in a concentration and time-dependent manner. Andrographolide induced apoptosis via nuclear condensation, phosphatidylserine externalization and caspase-3 activation. It also augmented cellular ROS levels which were in turn associated with apoptosis induction in DLD1 cells. Moreover, andrographolide displayed synergistic activity with 5-FU and PTX against DLD1 cells. Conclusion: The present study showed that andrographolide demonstrated antiproliferative and apoptotic properties, moreover it also displayed synergistic effect with chemotherapeutic drugs in colon cancer DLD1 cells.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4293
Author(s):  
Zhen-Wang Li ◽  
Chun-Yan Zhong ◽  
Xiao-Ran Wang ◽  
Shi-Nian Li ◽  
Chun-Yuan Pan ◽  
...  

Novel imidazole derivatives were designed, prepared, and evaluated in vitro for antitumor activity. The majority of the tested derivatives showed improved antiproliferative activity compared to the positive control drugs 5-FU and MTX. Among them, compound 4f exhibited outstanding antiproliferative activity against three cancer cell lines and was considerably more potent than both 5-FU and MTX. In particular, the selectivity index indicated that the tolerance of normal L-02 cells to 4f was 23–46-fold higher than that of tumor cells. This selectivity was significantly higher than that exhibited by the positive control drugs. Furthermore, compound 4f induced cell apoptosis by increasing the protein expression levels of Bax and decreasing those of Bcl-2 in a time-dependent manner. Therefore, 4f could be a potential candidate for the development of a novel antitumor agent.


Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Kollur Shiva Prasad ◽  
Shashanka K Prasad ◽  
Ravindra Veerapur ◽  
Ghada Lamraoui ◽  
Ashwini Prasad ◽  
...  

Herein we report the synthesis of zinc oxide nanoparticles (ZnONPs) using Withania somnifera root extract (WSE) as an effective chelating agent. The microscopic techniques viz., X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were employed to analyze the as-obtained ZnONPs. The crystalline planes observed from the XRD pattern agrees with the hexagonal wurtzite structure of the as-prepared ZnONPs. The aggregations and agglomerations observed in the SEM images indicated that the size of the as-prepared ZnONPs was between 30 and 43 nm. The interplanar distance between the lattice fringes observed in the HRTEM image was found to be 0.253 nm, which is in good agreement with the (100) plane obtained in the XRD pattern. Furthermore, the anti-breast cancer cytotoxic evaluation was carried out using the MCF-7 cell line, and the results showed significant cytotoxic effects in a dose-dependent manner.


2021 ◽  
pp. 1-8
Author(s):  
Blaise Cedric Kamdoum ◽  
Ingrid Simo ◽  
Steven Collins Njonte Wouamba ◽  
Brice Mariscal Tchatat Tali ◽  
Bathelemy Ngameni ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3430
Author(s):  
Vanessa Loaiza-Cano ◽  
Laura Milena Monsalve-Escudero ◽  
Manuel Pastrana Restrepo ◽  
Diana Carolina Quintero-Gil ◽  
Sergio Andres Pulido Muñoz ◽  
...  

Despite the serious public health problem represented by the diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses, there are still no specific licensed antivirals available for their treatment. Here, we examined the potential anti-arbovirus activity of ten di-halogenated compounds derived from L-tyrosine with modifications in amine and carboxyl groups. The activity of compounds on VERO cell line infection and the possible mechanism of action of the most promising compounds were evaluated. Finally, molecular docking between the compounds and viral and cellular proteins was evaluated in silico with Autodock Vina®, and the molecular dynamic with Gromacs®. Only two compounds (TDC-2M-ME and TDB-2M-ME) inhibited both ZIKV and CHIKV. Within the possible mechanism, in CHIKV, the two compounds decreased the number of genome copies and in the pre-treatment strategy the infectious viral particles. In the ZIKV model, only TDB-2M-ME inhibited the viral protein and demonstrate a virucidal effect. Moreover, in the U937 cell line infected with CHIKV, both compounds inhibited the viral protein and TDB-2M-ME inhibited the viral genome too. Finally, the in silico results showed a favorable binding energy between the compounds and the helicases of both viral models, the NSP3 of CHIKV and cellular proteins DDC and β2 adrenoreceptor.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 969
Author(s):  
Natasha Helleberg Madsen ◽  
Boye Schnack Nielsen ◽  
Son Ly Nhat ◽  
Søren Skov ◽  
Monika Gad ◽  
...  

Tumor-associated macrophages often correlate with tumor progression, and therapies targeting immune cells in tumors have emerged as promising treatments. To select effective therapies, we established an in vitro 3D multicellular spheroid model including cancer cells, fibroblasts, and monocytes. We analyzed monocyte infiltration and differentiation in spheroids generated from fibroblasts and either of the cancer cell lines MCF-7, HT-29, PANC-1, or MIA PaCa-2. Monocytes rapidly infiltrated spheroids and differentiated into mature macrophages with diverse phenotypes in a cancer cell line-dependent manner. MIA PaCa-2 spheroids polarized infiltrating monocytes to M2-like macrophages with high CD206 and CD14 expression, whereas monocytes polarized by MCF-7 spheroids displayed an M1-like phenotype. Monocytes in HT-29 and PANC-1 primarily obtained an M2-like phenotype but also showed upregulation of M1 markers. Analysis of the secretion of 43 soluble factors demonstrated that the cytokine profile between spheroid cultures differed considerably depending on the cancer cell line. Secretion of most of the cytokines increased upon the addition of monocytes resulting in a more inflammatory and pro-tumorigenic environment. These multicellular spheroids can be used to recapitulate the tumor microenvironment and the phenotype of tumor-associated macrophages in vitro and provide more realistic 3D cancer models allowing the in vitro screening of immunotherapeutic compounds.


Sign in / Sign up

Export Citation Format

Share Document