scholarly journals Experimental Study on Crack Extension Rules of Hydraulic Fracturing Based on Simulated Coal Seam Roof and Floor

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Lu Gao ◽  
Xiangtao Kang ◽  
Gun Huang ◽  
Ziyi Wang ◽  
Meng Tang ◽  
...  

Hydraulic fracturing can increase the fracture of coal seams, improve the permeability in the coal seam, and reduce the risk of coal and gas outburst. Most of the existing experimental specimens are homogeneous, and the influence of the roof and floor on hydraulic fracture expansion is not considered. Therefore, the hydraulic fracturing test of the simulated combination of the coal seam and the roof and floor under different stress conditions was carried out using the self-developed true triaxial coal mine dynamic disaster large-scale simulation test rig. The results show that (1) under the condition of triaxial unequal pressure, the hydraulic fractures are vertical in the coal seam, and the extension direction of hydraulic fractures in the coal seam will be deflected, with the increase of the ratio of the horizontal maximum principal stress to the horizontal minimum principal stress. The angle between the extension direction of the hydraulic fracture and the horizontal maximum principal stress decreases. (2) Under the condition of triaxial equal confining pressure, the extension of hydraulic fractures in the coal seam are random, and the hydraulic fracture will expand along the dominant fracture surface and form a unilateral expansion fracture when a crack is formed. (3) When the pressure in one direction is unloaded under the condition of the triaxial unequal pressure, the hydraulic fractures in the coal seam will reorientate, and the cracks will expand in the direction of the decreased confining pressure, forming almost mutually perpendicular turning cracks.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5193
Author(s):  
Yu Xiong ◽  
Dezhong Kong ◽  
Zhanbo Cheng ◽  
Zhijie Wen ◽  
Zhenqian Ma ◽  
...  

In order to solve the problems of roadway stability and easy instability under repeated mining of close-distance coal seam groups, the mechanism and control technology of surrounding rock instability under repeated mining were studied via indoor testing, field testing, physical similarity simulation experiment, and numerical simulation. The results show that the surrounding rock of roadway has low strength, low bearing capacity, and poor self-stabilization ability, and it is vulnerable to engineering disturbances and fragmentation. Affected by the disturbance under repeated mining, the roadway surrounding rock cracks are developed and the sensitivity is strong, and it is prone to large-scale loose and destroyed. The location of the roadway is unreasonable, and the maximum principal stress of the roadway is 3.1 times of the minimum principal stress, which is quite different. Thus, under a large horizontal stress, the surrounding rock undergoes long-range expansion deformation. On the basis of this research, the direction and emphasis of stability control of roadway surrounding rock under repeated mining of coal seam groups in close-distance are shown. A repair scheme (i.e., long bolt + high-strength anchor cable + U-shaped steel + grouting) is proposed, and reduces the risk of roadway instability.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012048
Author(s):  
Zhongshan Shen ◽  
Hui Xue ◽  
Zhiqiang Bai

Abstract Perforation azimuth has an important influence on the nucleation, propagation path and morphology of hydraulic fractures. In this paper, the true triaxial hydraulic fracturing simulation experimental system is used to analyze the hydraulic fracture morphology and propagation path under different perforation azimuth angles. With the increase of the azimuth angle of perforation, the stable fracture propagation pressure of the fracturing sample also increases. When the azimuth angle of perforation is 0°, the propagation pressure is about 18 MPa, and when the azimuth angle of perforation is 90°, the propagation pressure is about 26.5 MPa, increasing by nearly 47.22%.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Desheng Zhou ◽  
Peng Zheng ◽  
Jiao Peng ◽  
Pei He

Creating complex fracture network by hydraulic fracturing operation in unconventional reservoir development is the key factor of effective exploitation. The mechanism of creating a fracture network is not clear up to today. Conventional hydraulic fracturing theory is based on tensile failure of a rock, and a hydraulic fracture is widely accepted as propagating along the direction of in situ maximum horizontal principal stress in the industry. Based on rock elastic mechanics and fracture mechanics, considering combined tensile and shear failures, the maximum circumferential strain criterion and boundary element method (BEM), the paper studies the induced stress and its variation during a fracture propagation, the interaction between two or more hydraulic fractures, and the interaction between a hydraulic fracture and a natural crack. The paper shows that a propagating fracture will produce induced stresses on surrounding rock and form a stress shadow. Instead of propagation along the direction of maximum horizontal principal stress as a single fracture, the outside two fractures of two or more hydraulic fractures are exclusive and turning away from each other. A natural crack may be awaked and extend at its both tips by a propagating hydraulic fracture before their intersection, and the hydraulic fracture may deflect toward the natural crack. The interaction between a hydraulic fracture and a natural crack depends on the transverse distance between them and the initial length of the crack. The shorter the transverse distance and the longer the crack length are, the higher the possibility of the crack to be awaked is. The research results are helpful in understanding complex fracture network and may be used in determining hydraulic fracture places to create a complex fracture network.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xin Zhang ◽  
Yuqi Zhang

Using the dense linear multihole to control the directional hydraulic fracturing is a significant technical method to realize roof control in mining engineering. By combining the large-scale true triaxial directional hydraulic fracturing experiment with the discrete element numerical simulation experiment, the basic law of dense linear holes controlling directional hydraulic fracturing was studied. The results show the following: (1) Using the dense linear holes to control directional hydraulic fracturing can effectively form directional hydraulic fractures extending along the borehole line. (2) The hydraulic fracturing simulation program is very suitable for studying the basic law of directional hydraulic fracturing. (3) The reason why the hydraulic fracture can be controlled and oriented is that firstly, due to the mutual compression between the dense holes, the maximum effective tangential tensile stress appears on the connecting line of the drilling hole, where the hydraulic fracture is easy to be initiated. Secondly, due to the effect of pore water pressure, the disturbed stress zone appears at the tip of the hydraulic fracture, and the stress concentration zone overlaps with each other to form the stress guiding strip, which controls the propagation and formation of directional hydraulic fractures. (4) The angle between the drilling line and the direction of the maximum principal stress, the in situ stress, and the hole spacing has significant effects on the directional hydraulic fracturing effect. The smaller the angle, the difference of the in situ stress, and the hole spacing, the better the directional hydraulic fracturing effect. (5) The directional effect of synchronous hydraulic fracturing is better than that of sequential hydraulic fracturing. (6) According to the multihole linear codirectional hydraulic fracturing experiments, five typical directional hydraulic fracture propagation modes are summarized.


2021 ◽  
pp. 014459872198899
Author(s):  
Weiyong Lu ◽  
Changchun He

Directional rupture is one of the most important and most common problems related to rock breaking. The goal of directional rock breaking can be effectively achieved via multi-hole linear co-directional hydraulic fracturing. In this paper, the XSite software was utilized to verify the experimental results of multi-hole linear co-directional hydraulic fracturing., and its basic law is studied. The results indicate that the process of multi-hole linear co-directional hydraulic fracturing can be divided into four stages: water injection boost, hydraulic fracture initiation, and the unstable and stable propagation of hydraulic fracture. The stable expansion stage lasts longer and produces more microcracks than the unstable expansion stage. Due to the existence of the borehole-sealing device, the three-dimensional hydraulic fracture first initiates and expands along the axial direction in the bare borehole section, then extends along the axial direction in the non-bare hole section and finally expands along the axial direction in the rock mass without the borehole. The network formed by hydraulic fracture in rock is not a pure plane, but rather a curved spatial surface. The curved spatial surface passes through both the centre of the borehole and the axial direction relative to the borehole. Due to the boundary effect, the curved spatial surface goes toward the plane in which the maximum principal stress occurs. The local ground stress field is changed due to the initiation and propagation of hydraulic fractures. The propagation direction of the fractures between the fracturing boreholes will be deflected. A fracture propagation pressure that is greater than the minimum principle stress and a tension field that is induced in the leading edge of the fracture end, will aid to fracture intersection; as a result, the possibility of connecting the boreholes will increase.


2021 ◽  
pp. 014459872110019
Author(s):  
Weiyong Lu ◽  
Changchun He

During horizontal well staged fracturing, there is stress interference between multiple transverse fractures in the same perforation cluster. Theoretical analysis and numerical calculation methods are applied in this study. We analysed the mechanism of induced stress interference in a single fracture under different fracture spacings and principal stress ratios. We also investigated the hydraulic fracture morphology and synchronous expansion process under different fracture spacings and principal stress ratios. The results show that the essence of induced stress is the stress increment in the area around the hydraulic fracture. Induced stress had a dual role in the fracturing process. It created favourable ground stress conditions for the diversion of hydraulic fractures and the formation of complex fracture network systems, inhibited fracture expansion in local areas, stopped hydraulic fractures, and prevented the formation of effective fractures. The curves of the maximum principal stress, minimum principal stress, and induced principal stress difference with distance under different fracture lengths, different fracture spacings, and different principal stress ratios were consistent overall. With a small fracture spacing and a small principal stress ratio, intermediate hydraulic fractures were difficult to initiate or arrest soon after initiation, fractures did not expand easily, and the expansion speed of lateral hydraulic fractures was fast. Moreover, with a smaller fracture spacing and a smaller principal stress ratio, hydraulic fractures were more prone to steering, and even new fractures were produced in the minimum principal stress direction, which was beneficial to the fracture network communication in the reservoir. When the local stress and fracture spacing were appropriate, the intermediate fracture could expand normally, which could effectively increase the reservoir permeability.


2015 ◽  
Author(s):  
Manhal Sirat ◽  
Mujahed Ahmed ◽  
Xing Zhang

Abstract In-situ stress state plays an important role in controlling fracture growth and containment in hydraulic fracturing managements. It is evident that the mechanical properties, existing stress regime and the natural fracture network of its reservoir rocks and the surrounding formations mainly control the geometry, size and containments of produced hydraulic fractures. Furthermore, the three principal in situ stresses' axes swap directions and magnitudes at different depths giving rise to identifying different mechanical bedrocks with corresponding stress regimes at different depths. Hence predicting the hydro-fractures can be theoretically achieved once all the above data are available. This is particularly difficult in unconventional and tight carbonate reservoirs, where heterogeneity and highly stress variation, in terms of magnitude and orientation, are expected. To optimize the field development plan (FDP) of a tight carbonate gas reservoir in Abu Dhabi, 1D Mechanical Earth Models (MEMs), involving generating the three principal in-situ stresses' profiles and mechanical property characterization with depth, have been constructed for four vertical wells. The results reveal the swap of stress magnitudes at different mechanical layers, which controls the dimension and orientation of the produced hydro-fractures. Predicted containment of the Hydro-fractures within the specific zones is likely with inevitable high uncertainty when the stress contrast between Sv, SHmax with Shmin respectively as well as Young's modulus and Poisson's Ratio variations cannot be estimated accurately. The uncertainty associated with this analysis is mainly related to the lacking of the calibration of the stress profiles of the 1D MEMs with minifrac and/or XLOT data, and both mechanical and elastic properties with rock mechanic testing results. This study investigates the uncertainty in predicting hydraulic fracture containment due to lacking such calibration, which highlights that a complete suite of data, including calibration of 1D MEMs, is crucial in hydraulic fracture treatment.


2019 ◽  
Vol 9 (21) ◽  
pp. 4720 ◽  
Author(s):  
Ge ◽  
Zhang ◽  
Sun ◽  
Hu

Although numerous studies have tried to explain the mechanism of directional hydraulic fracturing in a coal seam, few of them have been conducted on gas migration stimulated by directional hydraulic fracturing during coal mine methane extraction. In this study, a fully coupled multi-scale model to stimulate gas extraction from a coal seam stimulated by directional hydraulic fracturing was developed and calculated by a finite element approach. The model considers gas flow and heat transfer within the hydraulic fractures, the coal matrix, and cleat system, and it accounts for coal deformation. The model was verified using gas amount data from the NO.8 coal seam at Fengchun mine, Chongqing, Southwest China. Model simulation results show that slots and hydraulic fracture can expand the area of gas pressure drop and decrease the time needed to complete the extraction. The evolution of hydraulic fracture apertures and permeability in coal seams is greatly influenced by the effective stress and coal matrix deformation. A series of sensitivity analyses were performed to investigate the impacts of key factors on gas extraction time of completion. The study shows that hydraulic fracture aperture and the cleat permeability of coal seams play crucial roles in gas extraction from a coal seam stimulated by directional hydraulic fracturing. In addition, the reasonable arrangement of directional boreholes could improve the gas extraction efficiency. A large coal seam dip angle and high temperature help to enhance coal mine methane extraction from the coal seam.


2011 ◽  
Vol 51 (1) ◽  
pp. 479 ◽  
Author(s):  
Amin Nabipour ◽  
Brian Evans ◽  
Mohammad Sarmadivaleh

Hydraulic fracturing is known as one of the most common stimulation techniques performed in oil and gas wells for maximising hydrocarbon production. It is a complex procedure due to numerous influencing factors associated with it. As a result, hydraulic fracturing monitoring techniques are used to determine the real-time extent of the induced fracture and to prevent unwanted events. Although the well-known method of monitoring is the microseismic method, active monitoring of a hydraulic fracture has shown capable of providing useful information about the fracture properties in both laboratory conditions and field operations. In this study, the focus is on laboratory experiment of hydraulic fracturing using a true-triaxial cell capable of simulating field conditions required for hydraulic fracturing. By injecting high-pressure fluid, a hydraulic fracture was induced inside a 20 cm cube of cement. Using a pair of ultrasonic transducers, transmission data were recorded before and during the test. Both cases of an open and closed hydraulic fracture were investigated. Then, using a discrete particle scheme, seismic monitoring of the hydraulic fracture was numerically modelled for a hexagonally packed sample and compared with the lab results. The results show good agreements with data in the literature. As the hydraulic fracture crosses the transducers line, signal dispersion was observed in the compressional wave data. A decrease was observed in both the amplitude and velocity of the waves. This can be used as an indicator of the hydraulic fracture width. As the fracture closes by reducing fluid pressure, a sensible increase occurred in the amplitude of the transmitted waves while the travel time showed no detectable variations. The numerical model produced similar results. As the modelled hydraulic fracture reached the source-receiver line, both amplitude and velocity of the transmitted waves decreased. This provides hope for the future real-time ability to monitor the growth of induced fractures during the fraccing operation. At present, however, it still needs improvements to be calibrated with experimental results.


2011 ◽  
Vol 51 (1) ◽  
pp. 499 ◽  
Author(s):  
Vamegh Rasouli ◽  
Mohammad Sarmadivaleh ◽  
Amin Nabipour

Hydraulic fracturing is a technique used to enhance production from low quality oil and gas reservoirs. This approach is the key technique specifically in developing unconventional reservoirs, such as tight formations and shale gas. During its propagation, the hydraulic fracture may arrive at different interfaces. The mechanical properties and bounding quality of the interface as well as insitu stresses are among the most significant parameters that determine the interaction mechanism, i.e. whether the hydraulic fracture stops, crosses or experiences an offset upon its arrival at the interface. The interface could be a natural fracture, an interbed, layering or any other weakness feature. In addition to the interface parameters, the rock types of the two sides of the interface may affect the interaction mechanism. To study the interaction mechanism, hydraulic fracturing experiments were conducted using a true triaxial stress cell on two cube samples of 15 cm. Sample I had a sandstone block in the middle surrounded by mortar, whereas in sample II the location of mortar and tight sandstone blocks were changed. The results indicated that besides the effect of the far field stress magnitudes, the heterogeneity of the formation texture and interface properties can have a dominant effect in propagation characteristics of an induced fracture.


Sign in / Sign up

Export Citation Format

Share Document