scholarly journals Liquiritin Alleviates Depression-Like Behavior in CUMS Mice by Inhibiting Oxidative Stress and NLRP3 Inflammasome in Hippocampus

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Chang Liu ◽  
Dai Yuan ◽  
Chi Zhang ◽  
Ye Tao ◽  
Ying Meng ◽  
...  

Objective. Central inflammation is generally accepted to be involved in the pathology of depression. We investigated whether liquiritin exerts antidepressant effects by inhibiting central NLRP3 inflammasomes. Results. The behavioral despair model and chronic unpredictable mild stress (CUMS) model in mice were established to evaluate the antidepressant action of liquiritin. In the despair model study, liquiritin (40 mg/kg) administration reduced immobility time in tail suspension test (TST) and forced swimming test (FST) without affecting locomotion activity. In CUMS model study, liquiritin (40 mg/kg, once daily for 4 weeks) significantly increased sucrose consumption and body weight of CUMS mice. The behavioral experiment results showed that liquiritin reduced the immobile time of CUMS mice in TST and FST, respectively, and increased the time spent and open arm entries in the elevated plus-maze (EPM) test. Further, the hippocampal superoxide dismutase (SOD) activity was increased in liquiritin-treated group, while malonaldehyde (MDA) decreased. Additionally, the hippocampal cytokines interleukin-18 (IL-18) and interleukin-1 beta (IL-1β) contents were reduced in the liquiritin-treated group. Further, liquiritin downregulated the expression of NLRP3 in the hippocampus of CUMS mice rather than TLR4. Besides, NLRP3 inflammasome-associated proteins caspase-1 and ASC were also downregulated. However, liquiritin did not alter the thermal stability of NLRP3 in the cellular thermal shift assay (CETSA), suggesting that its inhibition of NLPR3 was not by direct targeting of NLRP3 protein. Conclusions. Liquiritin attenuates depression-like behavior of CUMS mice and inhibited cytokines levels triggered by NLRP3 inflammasome, suggesting the antidepressant action is, at least partially, associated with antioxidant stress and inhibition of NLRP3 inflammasome activation.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ke-Ke Jia ◽  
Hong Ding ◽  
Han-Wen Yu ◽  
Tie-Jun Dong ◽  
Ying Pan ◽  
...  

Depression is a common mental disorder in modern society. A traditional Chinese medicine Huanglian-Wendan decoction with potential anti-inflammation is used as a clinical antidepressant. Our previous study showed central and peripheral inflammatory responses in a rat model of depression developed by chronic unpredictable mild stress (CUMS). Here, we investigated the anti-inflammatory activity and mechanism of Huanglian-Wendan decoction in CUMS rats. LC-MS/MS and HPLC were performed to determine the major compounds in water extract of this decoction. This study showed that Huanglian-Wendan decoction significantly increased sucrose consumption and reduced serum levels of interleukin-1 beta (IL-1β), IL-6, and alanine aminotransferase (ALT) in CUMS rats. Moreover, this decoction inhibited nuclear entry of nuclear factor-kappa B (NF-κB) with the reduction of phosphorylated protein of NF-κB (p-NF-κB) and inhibitor of NF-κB alpha (p-IκBα) and downregulated protein of nod-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC), cysteinyl aspartate-specific proteinase-1 (Caspase-1), and IL-1β in liver and brain regions of CUMS rats. These findings demonstrated that Huanglian-Wendan decoction had antidepressant activity with hepatoprotection in CUMS rats coinciding with its anti-inflammation in both periphery and central. The inhibitory modulation of NF-κB and NLRP3 inflammasome activation by Huanglian-Wendan decoction may mediate its antidepressant action.


2013 ◽  
Vol 81 (8) ◽  
pp. 2997-3008 ◽  
Author(s):  
Wei Li ◽  
Barry P. Katz ◽  
Margaret E. Bauer ◽  
Stanley M. Spinola

ABSTRACTRecognition of microbial infection by certain intracellular pattern recognition receptors leads to the formation of a multiprotein complex termed the inflammasome. Inflammasome assembly activates caspase-1 and leads to cleavage and secretion of the proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-18, which help control many bacterial pathogens. However, excessive inflammation mediated by inflammasome activation can also contribute to immunopathology. Here, we investigated whetherHaemophilus ducreyi, a Gram-negative bacterium that causes the genital ulcer disease chancroid, activates inflammasomes in experimentally infected human skin and in monocyte-derived macrophages (MDM). AlthoughH. ducreyiis predominantly extracellular during human infection, several inflammasome-related components were transcriptionally upregulated inH. ducreyi-infected skin. Infection of MDM with live, but not heat-killed,H. ducreyiinduced caspase-1- and caspase-5-dependent processing and secretion of IL-1β. Blockage ofH. ducreyiuptake by cytochalasin D significantly reduced the amount of secreted IL-1β. Knocking down the expression of the inflammasome components NLRP3 and ASC abolished IL-1β production. Consistent with NLRP3-dependent inflammasome activation, blocking ATP signaling, K+efflux, cathepsin B activity, and lysosomal acidification all inhibited IL-1β secretion. However, inhibition of the production and function of reactive oxygen species did not decrease IL-1β production. Polarization of macrophages to classically activated M1 or alternatively activated M2 cells abrogated IL-1β secretion elicited byH. ducreyi. Our study data indicate thatH. ducreyiinduces NLRP3 inflammasome activation via multiple mechanisms and suggest that the heterogeneity of macrophages within human lesions may modulate inflammasome activation during human infection.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 825
Author(s):  
Umar Farooq ◽  
Taous Khan ◽  
Shahid Ali Shah ◽  
Md. Sanower Hossain ◽  
Yousaf Ali ◽  
...  

Neurodegenerative diseases (NDs) extend the global health burden. Consumption of alcohol as well as maternal exposure to ethanol can damage several neuronal functions and cause cognition and behavioral abnormalities. Ethanol induces oxidative stress that is linked to the development of NDs. Treatment options for NDs are yet scarce, and natural product-based treatments could facilitate ND management since plants possess plenty of bioactive metabolites, including flavonoids, which typically demonstrate antioxidant and anti-inflammatory properties. Hypericum oblongifolium is an important traditional medicinal plant used for hepatitis, gastric ulcer, external wounds, and other gastrointestinal disorders. However, it also possesses multiple bioactive compounds and antioxidant properties, but the evaluation of isolated pure compounds for neuroprotective efficacy has not been done yet. Therefore, in the current study, we aim to isolate and characterize the bioactive flavonoid folecitin and evaluate its neuroprotective activity against ethanol-induced oxidative-stress-mediated neurodegeneration in the hippocampus of postnatal day 7 (PND-7) rat pups. A single dose of ethanol (5 g/kg body weight) was intraperitoneally administered after the birth of rat pups on PND-7. This caused oxidative stress accompanied by the activation of phosphorylated-c-Jun N-terminal kinase (p-JNK), nod-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and cysteine-aspartic acid protease-1 (caspase-1) proteins to form a complex called the NLRP3-inflammasome, which converts pro-interleukin 1 beta (IL-1B) to activate IL-1B and induce widespread neuroinflammation and neurodegeneration. In contrast, co-administration of folecitin (30 mg/kg body weight) reduced ethanol-induced oxidative stress, inhibited p-JNK, and deactivated the NLRP3-inflammasome complex. Furthermore, folecitin administration reduced neuroinflammatory and neurodegenerative protein markers, including decreased caspase-3, BCL-2-associated X protein (BAX), B cell CLL/lymphoma 2 (BCL-2), and poly (ADP-ribose) polymerase-1 (PARP-1) expression in the immature rat brain. These findings conclude that folecitin is a flavone compound, and it might be a novel, natural and safe agent to curb oxidative stress and its downstream harmful effects, including inflammasome activation, neuroinflammation, and neurodegeneration. Further evaluation in a dose-dependent manner would be worth it in order to find a suitable dose regimen for NDs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong-Su Park ◽  
Yao Lu ◽  
Kannupriya Pandey ◽  
GuanQun Liu ◽  
Yan Zhou

Nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome-mediated interleukin-1 beta (IL-1β) production is one of the crucial responses in innate immunity upon infection with viruses including influenza A virus (IAV) and is modulated by both viral and host cellular proteins. Among host proteins involved, we identified tripartite motif-containing protein 25 (TRIM25) as a positive regulator of porcine NLRP3 inflammasome-mediated IL-1β production. TRIM25 achieved this function by enhancing the pro-caspase-1 interaction with apoptosis-associated speck-like protein containing caspase recruitment domain (ASC). The N-terminal RING domain, particularly residues predicted to be critical for the E3 ligase activity of TRIM25, was responsible for this enhancement. However, non-structural protein 1 (NS1) C-terminus of 2009 pandemic IAV interfered with this action by interacting with TRIM25, leading to diminished association between pro-caspase-1 and ASC. These findings demonstrate that TRIM25 promotes the IL-1β signaling, while it is repressed by IAV NS1 protein, revealing additional antagonism of the NS1 against host pro-inflammatory responses.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Weicheng Zhao ◽  
Xiaolei Huang ◽  
Xue Han ◽  
Dan Hu ◽  
Xiaohuai Hu ◽  
...  

Background. Inflammatory responses induced by intestinal ischemia-reperfusion (IIR) lead to serious systemic organ dysfunction and pose a challenge for current treatment. This study aimed at investigating the effects of resveratrol on IIR-induced intestinal injury and its influence on mast cells (MCs) in rats. Methods. Rats subjected to intestinal ischemia for 60 min and 4 h of IIR were investigated. Animals were randomly divided into five groups (n=8 per group): sham, IIR, resveratrol (RESV, 15 mg/kg/day for 5 days before operation) + IIR, cromolyn sodium (CS, MC membrane stabilizer) + IIR, and RESV + compound 48/80 (CP, MC agonist) + IIR. Results. Intestinal injury and increased proinflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-18 were observed in the IIR group. Intestinal MC-related tryptase and β-hexosaminidase levels were also increased after rats were subjected to IIR accompanied by activation of NLRP3 inflammasomes. Interestingly, pretreatment with resveratrol significantly suppressed the activities of proinflammatory cytokines and attenuated intestinal injury. Resveratrol also reduced MC and NLRP3 inflammasome activation, which was consistent with the effects of cromolyn sodium. However, the protective effects of resveratrol were reversed by the MC agonist compound 48/80. Conclusions. In summary, these findings reveal that resveratrol suppressed IIR injury by stabilizing MCs, preventing them from degranulation, accompanied with intestinal mucosa NLRP3 inflammasome inhibition and intestinal epithelial cell apoptosis reduction.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xueping Yang ◽  
Lingli Li ◽  
Ke Fang ◽  
Ruolan Dong ◽  
Jingbin Li ◽  
...  

Wu-Mei-Wan (WMW) is a Chinese herbal formula used to treat type 2 diabetes. In this study, we aimed to explore the effects and mechanisms of WMW on insulin resistance in HepG2 cells. HepG2 cells were pretreated with palmitate (0.25 mM) to impair the insulin signaling pathway. Then, they were treated with different doses of WMW-containing medicated serum and stimulated with 100 nM insulin. Results showed that palmitate could reduce the glucose consumption rate in HepG2 cells and impair insulin signaling related to phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), thereby regulating the downstream signaling pathways. However, medicated serum of WMW restored impaired insulin signaling, upregulated the expression of phospho-IR (pIR), phosphatidylinositol 3-kinase p85 subunit, phosphoprotein kinase B, and glucose transporter 4, and decreased IRS serine phosphorylation. In addition, it decreased the expression of interleukin-1β and tumor necrosis factor-α, which are the key proinflammatory cytokines involved in insulin resistance; besides, it reduced the expression of NLRP3 inflammasome. These results suggested that WMW could alleviate palmitate-induced insulin resistance in HepG2 cells via inhibition of NLRP3 inflammasome and reduction of proinflammatory cytokine production.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ji Hae Jun ◽  
Jae-Kwang Shim ◽  
Ju Eun Oh ◽  
Eun-Jung Shin ◽  
Eunah Shin ◽  
...  

Emerging evidence indicates the pronounced role of inflammasome activation linked to reactive oxygen species (ROS) in the sterile inflammatory response triggered by ischemia/reperfusion (I/R) injury. Ethyl pyruvate (EP) is an antioxidant and conveys myocardial protection against I/R injury, while the exact mechanisms remain elusive. We aimed to investigate the effect of EP on myocardial I/R injury through mechanisms related to ROS and inflammasome regulation. The rats were randomly assigned to four groups: (1) sham, (2) I/R-control (IRC), (3) EP-pretreatment + I/R, and (4) I/R + EP-posttreatment. I/R was induced by a 30 min ligation of the left anterior descending artery followed by 4 h of reperfusion. EP (50 mg/kg) was administered intraperitoneally at 1 h before ischemia (pretreatment) or upon reperfusion (posttreatment). Both pre- and post-EP treatment resulted in significant reductions in myocardial infarct size (by 34% and 31%, respectively) and neutrophil infiltration. I/R-induced myocardial expressions of NADPH oxidase-4, carnitine palmitoyltransferase 1A, and thioredoxin-interacting protein (TXNIP) were mitigated by EP. EP treatment was associated with diminished inflammasome activation (NOD-like receptor 3 (NLRP3), apoptosis-associated speck-like protein, and caspase-1) and interleukin-1β induced by I/R. I/R-induced phosphorylation of ERK and p38 were also mitigated with EP treatments. In H9c2 cells, hypoxia-induced TXNIP and NLRP3 expressions were inhibited by EP and to a lesser degree by U0126 (MEK inhibitor) and SB203580 (p38 inhibitor) as well. EP’s downstream protective mechanisms in myocardial I/R injury would include mitigation of ROS-mediated NLRP3 inflammasome upregulation and its associated pathways, partly via inhibition of hypoxia-induced phosphorylation of ERK and p38.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xin Fan ◽  
Juan Du ◽  
Mao-Hua Wang ◽  
Jia-Man Li ◽  
Bo Yang ◽  
...  

Intestinal ischemia/reperfusion (I/R), which is associated with high morbidity and mortality, is also accompanied with abnormal energy metabolism and liver injury. Irisin, a novel exercise-induced hormone, can regulate adipose browning and thermogenesis. The following study investigated the potential role of dexmedetomidine in liver injury during intestinal I/R in rats. Adult male Sprague–Dawley rats underwent occlusion of the superior mesenteric artery for 90 min followed by 2 h of reperfusion. Dexmedetomidine or irisin-neutralizing antibody was intravenously administered for 1 h before surgery. The results demonstrated that severe intestine and liver injuries occurred during intestinal I/R as evidenced by pathological scores and an apparent increase in serum diamine oxidase (DAO), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) levels. In addition, the hepatic irisin, cleaved caspase-3, Bax, and NLRP3 inflammasome components (including NLRP3, ASC, and caspase-1), protein expressions, apoptotic index, reactive oxygen species (ROS), malondialdehyde (MDA), myeloperoxidase (MPO), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 levels increased; however, the serum irisin level and hepatic Bcl-2 protein expression and superoxide dismutase (SOD) activity decreased after intestinal I/R. Interestingly, dexmedetomidine could reduce the above listed changes and increase the irisin levels in plasma and the liver in I/R rats. Dexmedetomidine-mediated protective effects on liver injury and NLRP3 inflammasome activation during intestinal I/R were partially abrogated via irisin-neutralizing antibody treatment. The results suggest that irisin might contribute to the hepatoprotection of dexmedetomidine during intestinal ischemia/reperfusion.


Sign in / Sign up

Export Citation Format

Share Document