scholarly journals Magnetic Induction Technology-Based Wireless Sensor Network for Underground Infrastructure, Monitoring Soil Conditions, and Environmental Observation Applications: Challenges and Future Aspects

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Pratap Singh ◽  
Rishi Pal Singh ◽  
Yudhvir Singh ◽  
Jasgurpreet Singh Chohan ◽  
Shubham Sharma ◽  
...  

Wireless sensor networks (WSNs) especially with sensor nodes communicating with each other in medium other than air have been naive area of research since the last few years. In comparison to underwater communication, wireless underground sensor networks (WUSNs) are now being used in a large number of applications ranging from environmental observation, estimating chances of earthquake, communicating in underground tunnels or mines, and infrastructure monitoring to soil monitoring for agricultural purposes. In spite of all such promising applications, due to harsh and dynamically changing soil characteristics including soil type, water content in soil, and soil temperature, underground communication with conventional electromagnetic (EM) wave-based technology could not prove to be feasible for long-distance communication. Alternatively, due to magnetic permeability of soil being similar to air, magnetic induction- (MI-) based approach was adopted using magnetic coils as antenna for sensor nodes. Subsequently, MI waveguide and 3D coil mechanisms were considered to improve the system efficiency. Attributing to different characteristics of underlying transmission channels, communication protocols as well as architecture of MI-based WUSNS (MI-WUSNs) have been developed with different approaches. In this review paper, in addition to the latest advancements made for MI-WUSNs, closely associated areas of MI-WUSNs have also been explored. Additionally, research areas which are still open to be worked upon have been detailed out.

Author(s):  
Adamu Murtala Zungeru ◽  
Joseph Chuma ◽  
Mmoloki Mangwala ◽  
Boyce Sigweni ◽  
Oduetse Matsebe

The most challenging issue in the design of wireless sensor networks for the application of localization in the underground environment, mostly for miner’s location, is the sensor nodes’ energy consumption, efficiency and communication. Underground Wireless Sensor Networks are active and promising area of application of Wireless Sensor Networks (WSNs), whereby sensor nodes perform sensing duties in the underground environment. Most of the communication techniques used in the underground environment experience a high path loss and hence, hinders the range needed for transmission. However, the available option to increase information transmission is to increase the transmission power which needs large size of apparatus which is also limited in the underground. To solve the mentioned problems, this paper proposed a Magnetic Induction based Pulse Power. Analytical results of the Magnetic Induction based Pulse Power with an ordinary magnetic induction communication technique show an improvement in Signal-to-Noise Ratio (SNR) and path loss with variation in distance between nodes and frequency of operation. This paper further formulates a nonlinear program to determine the optimal data (events) extraction in a grid based WUSNs.


Author(s):  
Homero Toral-Cruz ◽  
Faouzi Hidoussi ◽  
Djallel Eddine Boubiche ◽  
Romeli Barbosa ◽  
Miroslav Voznak ◽  
...  

Wireless sensor networks (WSN) have become one of the most attractive research areas in many scientific fields for the last years. WSN consists of several sensor nodes that collect data in inaccessible areas and send them to the base station (BS) or sink. At the same time sensor networks have some special characteristics compared to traditional networks, which make it hard to deal with such kind of networks. The architecture of protocol stack used by the base station and sensor nodes, integrates power and routing awareness (i.e., energy-aware routing), integrates data with networking protocols (i.e., data aggregation), communicates power efficiently through the wireless medium, and promotes cooperative efforts of sensor nodes (i.e., task management plane).


2018 ◽  
Vol 7 (2.32) ◽  
pp. 136 ◽  
Author(s):  
Riaz Shaik ◽  
Shaik Shakeel Ahamad

Wireless sensor networks are becoming part of many of the research areas to address different issues related to technological and societal. So, The developments in wireless communication technology have made the deployment of  wireless sensor nodes connected through wireless medium, known as wireless sensor networks. Wireless sensor networks have numerous applications in many fields like military , environmental monitoring , health , industry etc.. wireless sensor networks have more benefits over Wired networks .Though there are several advantages of wireless networks, they are prone to security issues. . Security became a major concern for wireless sensor networks because of the wider application. So ,this paper addresses the critical security issues of wireless sensor networks that may encounter in the different layers of the communication protocols like OSI.This paper presents a detailed review on the security issues and its challenges of the wireless sensor networks.  


2021 ◽  
Author(s):  
Deepak raj D ◽  
RAJA K ◽  
AYYASAMY A

Abstract The special features of smart grid technology includes regular metering communication, renewable power incorporation, allotment computerization and whole scrutinizing and organization of complete power grid. Little micro-electrical automatic schemes that are deployed in collecting and broadcasting data from ambience are Wireless Sensor Networks (WSNs). Providing security and energy consumptions are the most emerging issues in Wireless sensor network communication. To enhance the lifespan of a network, energy efficiency should be increased by decreasing energy consumption of the sensor nodes, thus striking a balance in the power consumption of each node. As the primary source of origin of energy consumption of sensor nodes is long distance transmission of data, good impact on energy consumption can be provided through an efficient routing protocol. So as to enhance the lifespan of a network, a number of protocols have been put forth in the form of optimization algorithms. This study involves Glowworm Swarm Optimization (GSO). In GSO, a probabilistic cost is computed by every glowworm in spite of finding its neighboring glowworm that has the enhanced luciferin intensity than others. Based on this probability cost, a glow worm moves towards the chosen glowworm. To enhance GSO performance, the GSO hybrid optimized with Harmony Search (HS) and Tabu Search (TS) local methods are also proposed. Results prove that proposed method achieves better performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-7 ◽  
Author(s):  
Bingtao Zhang ◽  
Lingyan Meng

Wireless sensor network (WSN) can play an important role during precision agriculture production to promote the growth of the agricultural economy. The application of WSN in agricultural production can achieve precision agriculture. WSN has the biggest challenge of energy efficiency. This paper proposes a model to efficiently utilize the energy of sensor nodes in precision agriculture production. The proposed model provides a comprehensive analysis of the precision agriculture. The model focuses on the characteristics of WSN and expands its application in precision agriculture. In addition, this paper also puts forward some technical prospects to provide a good reference for comprehensively and effectively improving the overall development level of precision agriculture. The paper analyzes the applicability and limitations of the existing sensor networks used for agricultural production technology. The ZigBee and Lora wireless protocols are utilized to have the best power consumption and communication in short distance and long distance. Our proposed model also suggests improvement measures for the shortcomings of existing WSN in the context of energy efficiency to provide an information platform for WSN to play a better role in agricultural production.


The most interesting and challenging research areas in WSNs are routing protocol based on RSSI localization technique in wireless sensor networks. Get-up-and-go safeguarding is the most important experiment for WSNs and make the most of the energy efficiently during routing is an essential requirement and is a demanding task for all other research areas in WSNs. Enhancing the lifespan of the network be contingent on game theory based on RSSI localization technique in wireless sensor networks are the foremost purposes in Machiavellian WSNs since the course-plotting up for theory based on RSSI sensor nodes are battery operated and cannot be replenished or recharged frequently. Here game theory based on RSSI localization for increasing the Wireless Sensor Network life-time using Ant Colony Optimization metaheuristics.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2866
Author(s):  
Pankaj Kumar Mishra ◽  
Shashi Kant Verma

The restriction on the battery life of sensors is a bottleneck for wireless sensor networks (WSNs). This paper proposes a new feed-forward multi-clustering protocol (FFMCP) to boost the network lifetime. The utilization of fuzzy logic helps to overcome the uncertainties in the value of input parameters. The proposed protocol selects the most suitable cluster heads (CHs) using the multi-clustering method. A multi-clustering technique is defined utilizing the node’s information of the previous round and a fuzzy inference system to decide the CHs. The sensor nodes spend energy due to non-uniform CH distribution and long-distance data transmission by member nodes. The main focus of the proposed protocol is to reduce the member node distance. Our proposal distributes CH nodes uniformly using unequal clustering. The simulation outcome reveals that the proposed algorithm(FFMCP) has better performance in terms of tenth node death (TND), half node death (HND), remaining energy after 800 rounds (E_800), and average energy spent per round (AVG_PR) as compared to standard clustering schemes in the past.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2014 ◽  
Vol 8 (1) ◽  
pp. 668-674
Author(s):  
Junguo Zhang ◽  
Yutong Lei ◽  
Fantao Lin ◽  
Chen Chen

Wireless sensor networks composed of camera enabled source nodes can provide visual information of an area of interest, potentially enriching monitoring applications. The node deployment is one of the key issues in the application of wireless sensor networks. In this paper, we take the effective coverage and connectivity as the evaluation indices to analyze the effect of the perceivable angle and the ratio of communication radius and sensing radius for the deterministic circular deployment. Experimental results demonstrate that the effective coverage area of the triangle deployment is the largest when using the same number of nodes. When the nodes are deployed in the same monitoring area in the premise of ensuring connectivity, rhombus deployment is optimal when √2 < rc / rs < √3 . The research results of this paper provide an important reference for the deployment of the image sensor networks with the given parameters.


Sign in / Sign up

Export Citation Format

Share Document