scholarly journals Energy Efficiency Analysis of Wireless Sensor Networks in Precision Agriculture Economy

2021 ◽  
Vol 2021 ◽  
pp. 1-7 ◽  
Author(s):  
Bingtao Zhang ◽  
Lingyan Meng

Wireless sensor network (WSN) can play an important role during precision agriculture production to promote the growth of the agricultural economy. The application of WSN in agricultural production can achieve precision agriculture. WSN has the biggest challenge of energy efficiency. This paper proposes a model to efficiently utilize the energy of sensor nodes in precision agriculture production. The proposed model provides a comprehensive analysis of the precision agriculture. The model focuses on the characteristics of WSN and expands its application in precision agriculture. In addition, this paper also puts forward some technical prospects to provide a good reference for comprehensively and effectively improving the overall development level of precision agriculture. The paper analyzes the applicability and limitations of the existing sensor networks used for agricultural production technology. The ZigBee and Lora wireless protocols are utilized to have the best power consumption and communication in short distance and long distance. Our proposed model also suggests improvement measures for the shortcomings of existing WSN in the context of energy efficiency to provide an information platform for WSN to play a better role in agricultural production.

Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Pratap Singh ◽  
Rishi Pal Singh ◽  
Yudhvir Singh ◽  
Jasgurpreet Singh Chohan ◽  
Shubham Sharma ◽  
...  

Wireless sensor networks (WSNs) especially with sensor nodes communicating with each other in medium other than air have been naive area of research since the last few years. In comparison to underwater communication, wireless underground sensor networks (WUSNs) are now being used in a large number of applications ranging from environmental observation, estimating chances of earthquake, communicating in underground tunnels or mines, and infrastructure monitoring to soil monitoring for agricultural purposes. In spite of all such promising applications, due to harsh and dynamically changing soil characteristics including soil type, water content in soil, and soil temperature, underground communication with conventional electromagnetic (EM) wave-based technology could not prove to be feasible for long-distance communication. Alternatively, due to magnetic permeability of soil being similar to air, magnetic induction- (MI-) based approach was adopted using magnetic coils as antenna for sensor nodes. Subsequently, MI waveguide and 3D coil mechanisms were considered to improve the system efficiency. Attributing to different characteristics of underlying transmission channels, communication protocols as well as architecture of MI-based WUSNS (MI-WUSNs) have been developed with different approaches. In this review paper, in addition to the latest advancements made for MI-WUSNs, closely associated areas of MI-WUSNs have also been explored. Additionally, research areas which are still open to be worked upon have been detailed out.


2014 ◽  
Vol 573 ◽  
pp. 407-411
Author(s):  
Chelliah Pandeeswaran ◽  
Natrajan Papa ◽  
Sundar G. Jayesh

MAC protocol design in Wireless sensor networks becomes vibrant research field for the past several years. In this paper an EE-Hybrid MAC protocol (Energy efficient hybrid Medium Access Control) has been proposed, which is energy efficient and low latency MAC protocol, which uses interrupt method to assign priority for certain wireless sensor nodes assumed to be present in critical loops of industrial process control domain. EE-Hybrid MAC overcomes some of the limitations in the existing approaches. Industrial wireless sensor network require a suitable MAC protocol which offers energy efficiency and capable of handling emergency situations in industrial automation domain. Time critical and mission critical applications demands not only energy efficiency but strict timeliness and reliability. Harsh environmental condition and dynamic network topologies may cause industrial sensor to malfunction, so the developed protocol must adapt to changing topology and harsh environment. Most of the existing MAC protocols have number of limitations for industrial application domain In industrial automation scenario, certain sensor loops are found to be time critical, where data’s have to be transferred without any further delay. The proposed EE-Hybrid MAC protocol is simulated in NS2 environment, from the result it is observed that proposed protocol provides better performance compared to the conventional MAC protocols.


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2126 ◽  
Author(s):  
Lijun Wang ◽  
Jia Yan ◽  
Tao Han ◽  
Dexiang Deng

Based on the connectivity and energy consumption problems in wireless sensor networks, this paper proposes a kind of new network algorithm called the connectivity and energy efficiency (CEE) algorithm to guarantee the connectivity and connectivity probability, and also to reduce the network energy consumption as much as possible. Under the premise that all sensors can communicate with each other in a specific communication radius, we obtained the relationship among the connectivity, the number of sensor nodes, and the communication radius because of the theory of probability and statistics. The innovation of the paper is to maximize the network connectivity and connectivity probability, by choosing which types of sleeping nodes to wake up. According to the node’s residual energy and the relative value of distance, the algorithm reduces the energy consumption of the whole network as much as possible, and wakes up the number of neighbor nodes as little as possible, to improve the service life of the whole network. Simulation results show that this algorithm combines the connectivity and the energy efficiency, provides a useful reference value for the normal operation of the sensors networks.


2014 ◽  
Vol 666 ◽  
pp. 322-326
Author(s):  
Yu Yang Peng ◽  
Jae Ho Choi

Energy efficiency is one of the important hot issues in wireless sensor networks. In this paper, a multi-hop scheme based on a cooperative multi-input multi-outputspatial modulation technique is proposed in order to improve energy efficiency in WSN. In this scheme, the sensor nodes are grouped into clusters in order to achieve a multi-input multi-output system; and a simple forwarding transmission scenario is considered so that the intermediate clusters only forward packets originated from the source cluster down to the sink cluster. In order to verify the performance of the proposed system, the bit energy consumption formula is derived and the optimal number of hopsis determined. By qualitative experiments, the obtained results show that the proposed scheme can deliver the data over multiple hops consuming optimal energy consumption per bit.


2015 ◽  
Vol 785 ◽  
pp. 744-750
Author(s):  
Lei Gao ◽  
Qun Chen

In order to solve the energy limited problem of sensor nodes in the wireless sensor networks (WSN), a fast clustering algorithm based on energy efficiency for wire1ess sensor networks is presented in this paper. In the system initialization phase, the deployment region is divided into several clusters rapidly. The energy consumption ratio and degree of the node are chosen as the selection criterion for the cluster head. Re-election of the cluster head node at this time became a local trigger behavior. Because of the range of the re-election is within the cluster, which greatly reduces the complexity and computational load to re-elect the cluster head node. Theoretical analysis indicates that the timing complexity of the clustering algorithm is O(1), which shows that the algorithm overhead is small and has nothing to do with the network size n. Simulation results show that clustering algorithm based on energy efficiency can provide better load balancing of cluster heads and less protocol overhead. Clustering algorithm based on energy efficiency can reduce energy consumption and prolong the network lifetime compared with LEACH protocol.


Author(s):  
Ananda Kumar K S ◽  
Balakrishna R

At present day’s wireless sensor networks, obtain a lot consideration to researchers. Maximum number of sensor nodes are scattered that can communicate with all others. Reliable data communication and energy consumption are the mainly significant parameters that are required in wireless sensor networks. Many of MAC protocols have been planned to improve the efficiency more by enhancing the throughput and energy consumption. The majority of the presented medium access control protocols to only make available, reliable data delivery or energy efficiency does not offer together at the same time. In this research work the author proposes a novel approach based on Receiver Centric-MAC is implemented using NS2 simulator. Here, the author focuses on the following parametric measures like - energy consumption, reliability and bandwidth. RC-MAC provides high bandwidth without decreasing energy efficiency. The results show that 0.12% of less energy consumption, reliability improved by 20.86% and bandwidth increased by 27.32% of RC-MAC compared with MAC IEEE 802.11.


Author(s):  
Nejla Rouissi ◽  
Hamza Gharsellaoui ◽  
Sadok Bouamama

Wireless sensor networks (WSNs) play a central role in the Internet of Things (IoT). It consists of small-size sensor nodes connected to the internet through gateways providing content rich information. So, the traffic transmission between sensor nodes over radio links requires highly bandwidth and needs to ensure the reliability of the data. Therefore, providing safe communications of sensor data over wireless communication channel plays an essential role. Thus, the important issue on wireless sensor networks is to find an optimal schema that ensuring energy efficiency together with the security. In contrast, implementing traditional cryptographic algorithms is not very well suited for WSNs nodes. In this article, a novel combination of spread spectrum into watermarking scheme is presented. This watermarking schema based on direct-frequency-time spread spectrum secures data communication against jamming and falsification to ensure data integrity and increases resistance to interference at the same time ensures the energy efficiency.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 98
Author(s):  
Rajkumar Singh Rathore ◽  
Suman Sangwan ◽  
Kabita Adhikari ◽  
Rupak Kharel

Minimizing energy consumption is one of the major challenges in wireless sensor networks (WSNs) due to the limited size of batteries and the resource constrained tiny sensor nodes. Energy harvesting in wireless sensor networks (EH-WSNs) is one of the promising solutions to minimize the energy consumption in wireless sensor networks for prolonging the overall network lifetime. However, static energy harvesting in individual sensor nodes is normally limited and unbalanced among the network nodes. In this context, this paper proposes a modified echo state network (MESN) based dynamic duty cycle with optimal opportunistic routing (OOR) for EH-WSNs. The proposed model is used to act as a predictor for finding the expected energy consumption of the next slot in dynamic duty cycle. The model has adapted a whale optimization algorithm (WOA) for optimally selecting the weights of the neurons in the reservoir layer of the echo state network towards minimizing energy consumption at each node as well as at the network level. The adapted WOA enabled energy harvesting model provides stable output from the MESN relying on optimal weight selection in the reservoir layer. The dynamic duty cycle is updated based on energy consumption and optimal threshold energy for transmission and reception at bit level. The proposed OOR scheme uses multiple energy centric parameters for selecting the relay set oriented forwarding paths for each neighbor nodes. The performance analysis of the proposed model in realistic environments attests the benefits in terms of energy centric metrics such as energy consumption, network lifetime, delay, packet delivery ratio and throughput as compared to the state-of-the-art-techniques.


Sign in / Sign up

Export Citation Format

Share Document