scholarly journals L1 Antisense Promoter Drives Tissue-Specific Transcription of Human Genes

2006 ◽  
Vol 2006 ◽  
pp. 1-16 ◽  
Author(s):  
Kert Mätlik ◽  
Kaja Redik ◽  
Mart Speek

Transcription of transposable elements interspersed in the genome is controlled by complex interactions between their regulatory elements and host factors. However, the same regulatory elements may be occasionally used for the transcription of host genes. One such example is the human L1 retrotransposon, which contains an antisense promoter (ASP) driving transcription into adjacent genes yielding chimeric transcripts. We have characterized 49 chimeric mRNAs corresponding to sense and antisense strands of human genes. Here we show that L1 ASP is capable of functioning as an alternative promoter, giving rise to a chimeric transcript whose coding region is identical to the ORF of mRNA of the following genes:KIAA1797,CLCN5, andSLCO1A2. Furthermore, in these cases the activity of L1 ASP is tissue-specific and may expand the expression pattern of the respective gene. The activity of L1 ASP is tissue-specific also in cases where L1 ASP produces antisense RNAs complementary toCOL11A1andBOLLmRNAs. Simultaneous assessment of the activity of L1 ASPs in multiple loci revealed the presence of L1 ASP-derived transcripts in all human tissues examined. We also demonstrate that L1 ASP can act as a promoter in vivo and predict that it has a heterogeneous transcription initiation site. Our data suggest that L1 ASP-driven transcription may increase the transcriptional flexibility of several human genes.

2007 ◽  
Vol 189 (17) ◽  
pp. 6324-6332 ◽  
Author(s):  
Meropi K. Matta ◽  
Efthimia E. Lioliou ◽  
Cynthia H. Panagiotidis ◽  
Dimitrios A. Kyriakidis ◽  
Christos A. Panagiotidis

ABSTRACT AtoC has a dual function as both an antizyme, the posttranslational inhibitor of polyamine biosynthetic enzymes, and the transcriptional regulator of genes involved in short-chain fatty acid catabolism (the atoDAEB operon). We have previously shown that AtoC is the response regulator of the AtoS-AtoC two-component signal transduction system that activates atoDAEB when Escherichia coli is exposed to acetoacetate. Here, we show that the same cis elements control both promoter inducibility and AtoC binding. Chromatin immunoprecipitation experiments confirmed the acetoacetate-inducible binding of AtoC to the predicted DNA region in vivo. DNase I protection footprinting analysis revealed that AtoC binds two 20-bp stretches, constituting an inverted palindrome, that are located at −146 to −107 relative to the transcription initiation site. Analyses of promoter mutants obtained by in vitro chemical mutagenesis of the atoDAEB promoter verified both the importance of AtoC binding for the inducibility of the promoter by acetoacetate and the σ54 dependence of atoDAEB expression. The integration host factor was also identified as a critical component of the AtoC-mediated induction of atoDAEB.


1989 ◽  
Vol 108 (2) ◽  
pp. 579-593 ◽  
Author(s):  
M J Monteiro ◽  
D W Cleveland

We have used transient and stable DNA transfection to force synthesis of the mouse NF-L and NF-M genes in nonneuronal cultured animal cells. When the authentic NF-L gene (containing 1.7 kb of sequences 5' to the transcription initiation site) was transfected into L cells, correctly initiated NF-L mRNA was produced from the transfected gene but not the endogenous NF-L genes. Therefore, the normal restriction of NF-L expression to neurons cannot derive exclusively from absence in nonneuronal cells of neuron-specific transcription factors. When the NF-L coding region was linked to the strong promoter from Moloney Murine Sarcoma virus, we obtained high levels of synthesis of NF-L subunits (accumulating to as much as 9% of cell protein in stable cell lines). Although NF-L and NF-M polypeptides are normally expressed exclusively in postmitotic neurons, NF-L or NF-M polypeptides expressed in fibroblasts were efficiently assembled into intermediate filament arrays, thus demonstrating the competence of both NF-L and NF-M to assemble in vivo in the absence of additional neuron-specific factors. As judged by immunofluorescence localization and by the alteration in the solubility of the endogenous vimentin filaments, filaments containing NF-L appeared to be copolymers with vimentin. Neither the alteration in the properties of the vimentin array nor the accumulation of NF-L to a level that made it the second most abundant cellular protein (after actin) had any observable effect on cell viability or growth rate.


1990 ◽  
Vol 10 (6) ◽  
pp. 2832-2839
Author(s):  
A S Ponticelli ◽  
K Struhl

The promoter region of the Saccharomyces cerevisiae his3 gene contains two TATA elements, TC and TR, that direct transcription initiation to two sites designated +1 and +13. On the basis of differences between their nucleotide sequences and their responsiveness to upstream promoter elements, it has previously been proposed that TC and TR promote transcription by different molecular mechanisms. To begin a study of his3 transcription in vitro, we used S. cerevisiae nuclear extracts together with various DNA templates and transcriptional activator proteins that have been characterized in vivo. We demonstrated accurate transcription initiation in vitro at the sites used in vivo, transcriptional activation by GCN4, and activation by a GAL4 derivative on various gal-his3 hybrid promoters. In all cases, transcription stimulation was dependent on the presence of an acidic activation region in the activator protein. In addition, analysis of promoters containing a variety of TR derivatives indicated that the level of transcription in vitro was directly related to the level achieved in vivo. The results demonstrated that the in vitro system accurately reproduced all known aspects of in vivo his3 transcription that depend on the TR element. However, in striking contrast to his3 transcription in vivo, transcription in vitro yielded approximately 20 times more of the +13 transcript than the +1 transcript. This result was not due to inability of the +1 initiation site to be efficiently utilized in vitro, but rather it reflects the lack of TC function in vitro. The results support the idea that TC and TR mediate transcription from the wild-type promoter by distinct mechanisms.


1988 ◽  
Vol 8 (7) ◽  
pp. 2896-2909 ◽  
Author(s):  
E A Sternberg ◽  
G Spizz ◽  
W M Perry ◽  
D Vizard ◽  
T Weil ◽  
...  

Terminal differentiation of skeletal myoblasts is accompanied by induction of a series of tissue-specific gene products, which includes the muscle isoenzyme of creatine kinase (MCK). To begin to define the sequences and signals involved in MCK regulation in developing muscle cells, the mouse MCK gene has been isolated. Sequence analysis of 4,147 bases of DNA surrounding the transcription initiation site revealed several interesting structural features, some of which are common to other muscle-specific genes and to cellular and viral enhancers. To test for sequences required for regulated expression, a region upstream of the MCK gene from -4800 to +1 base pairs, relative to the transcription initiation site, was linked to the coding sequences of the bacterial chloramphenicol acetyltransferase (CAT) gene. Introduction of this MCK-CAT fusion gene into C2 muscle cells resulted in high-level expression of CAT activity in differentiated myotubes and no detectable expression in proliferating undifferentiated myoblasts or in nonmyogenic cell lines. Deletion mutagenesis of sequences between -4800 and the transcription start site showed that the region between -1351 and -1050 was sufficient to confer cell type-specific and developmentally regulated expression on the MCK promoter. This upstream regulatory element functioned independently of position, orientation, or distance from the promoter and therefore exhibited the properties of a classical enhancer. This upstream enhancer also was able to confer muscle-specific regulation on the simian virus 40 promoter, although it exhibited a 3- to 5-fold preference for its own promoter. In contrast to the cell type- and differentiation-specific expression of the upstream enhancer, the MCK promoter was able to function in myoblasts and myotubes and in nonmyogenic cell lines when combined with the simian virus 40 enhancer. An additional positive regulatory element was identified within the first intron of the MCK gene. Like the upstream enhancer, this intragenic element functioned independently of position, orientation, and distance with respect to the MCK promoter and was active in differentiated myotubes but not in myoblasts. These results demonstrate that expression of the MCK gene in developing muscle cells is controlled by complex interactions among multiple upstream and intragenic regulatory elements that are functional only in the appropriate cellular context.


2015 ◽  
Vol 35 (12) ◽  
pp. 2165-2172 ◽  
Author(s):  
Jonathon Marks-Bluth ◽  
Anchit Khanna ◽  
Vashe Chandrakanthan ◽  
Julie Thoms ◽  
Thomas Bee ◽  
...  

The bone morphogenetic protein (BMP)/SMAD signaling pathway is a critical regulator of angiogenic sprouting and is involved in vascular development in the embryo. SMAD1 and SMAD5, the core mediators of BMP signaling, are vital for this activity, yet little is known about their transcriptional regulation in endothelial cells. Here, we have integrated multispecies sequence conservation, tissue-specific chromatin,in vitroreporter assay, andin vivotransgenic data to identify and validateSmad1+63 and theSmad5promoter as tissue-specificcis-regulatory elements that are active in the developing endothelium. The activity of these elements in the endothelium was dependent on highly conserved ETS, GATA, and E-box motifs, and chromatin immunoprecipitation showed high levels of enrichment of FLI1, GATA2, and SCL at these sites in endothelial cell lines and E11 dorsal aortasin vivo. Knockdown of FLI1 and GATA2 but not SCL reduced the expression of SMAD1 and SMAD5 in endothelial cellsin vitro. In contrast, CD31+cKit−endothelial cells harvested from embryonic day 9 (E9) aorta-gonad-mesonephros (AGM) regions of GATA2 null embryos showed reducedSmad1but notSmad5transcript levels. This is suggestive of a degree ofin vivoselection where, in the case of reduced SMAD1 levels, endothelial cells with more robust SMAD5 expression have a selective advantage.


2004 ◽  
Vol 15 (3) ◽  
pp. 1185-1196 ◽  
Author(s):  
María-Cruz Marín ◽  
José-Rodrigo Rodríguez ◽  
Alberto Ferrús

The Drosophila wings-up A gene encodes Troponin I. Two regions, located upstream of the transcription initiation site (upstream regulatory element) and in the first intron (intron regulatory element), regulate gene expression in specific developmental and muscle type domains. Based on LacZ reporter expression in transgenic lines, upstream regulatory element and intron regulatory element yield identical expression patterns. Both elements are required for full expression levels in vivo as indicated by quantitative reverse transcription-polymerase chain reaction assays. Three myocyte enhancer factor-2 binding sites have been functionally characterized in each regulatory element. Using exon specific probes, we show that transvection is based on transcriptional changes in the homologous chromosome and that Zeste and Suppressor of Zeste 3 gene products act as repressors for wings-up A. Critical regions for transvection and for Zeste effects are defined near the transcription initiation site. After in silico analysis in insects (Anopheles and Drosophila pseudoobscura) and vertebrates (Ratus and Coturnix), the regulatory organization of Drosophila seems to be conserved. Troponin I (TnI) is expressed before muscle progenitors begin to fuse, and sarcomere morphogenesis is affected by TnI depletion as Z discs fail to form, revealing a novel developmental role for the protein or its transcripts. Also, abnormal stoichiometry among TnI isoforms, rather than their absolute levels, seems to cause the functional muscle defects.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3633-3633
Author(s):  
Louis C. Dore ◽  
Christopher R. Vakoc ◽  
Gerd A. Blobel ◽  
Ross C. Hardison ◽  
David M. Bodine ◽  
...  

Abstract Alpha Hemoglobin Stabilizing Protein (AHSP, Eraf) is an abundant erythroid protein that binds and stabilizes alpha globin and alpha hemoglobin (Hb). In mice, loss of AHSP causes hemolytic anemia, with elevated levels of reactive oxygen species and Hb precipitation in erythrocytes. Loss of AHSP exacerbates beta thalassemia phenotypes in mice, presumably by enhancing the toxicity of excessive free alpha Hb. Based on these findings, AHSP is a candidate modifier gene for beta thalassemia in humans. No mutations in the AHSP coding region have been identified in patients to date. However, several groups reported an inverse correlation between beta thalassemia severity and erythroid AHSP expression levels, raising the possibility that AHSP is a quantitative trait modifier of beta thalassemia. To address this possibility, it is important to define the mechanisms that control expression of the AHSP gene. Transcripts of murine Ahsp are inducible by GATA-1. The goals of the current studies are to investigate the mechanisms of this induction and to define the DNA domain that regulates the locus. Using phylogenetic comparisons, we identified a hotspot for mammalian chromosomal rearrangement just downstream of the Ahsp gene. This hotspot is located at the end of a syntenic block of approximately 350 kb that is conserved in mammals and likely marks the 3′ end of the gene regulatory domain. We focused our initial functional studies on a 7 kb genomic region bounded at the 5′ (centromeric) end of Ahsp by the nearest adjacent gene, an EST expressed in multiple tissues, and at the 3′ (telomeric) end by the rearrangement hotspot. In transient transfection assays, the Ahsp promoter region conferred erythroid-specific expression to a linked reporter gene. In heterologous cells, GATA-1 transactivated the Ahsp promoter in a dose-dependent fashion. To examine GATA-1 binding and its subsequent effects on the Ahsp gene in vivo, we used G1E-ER4 cells, a GATA-1 null erythroblast line that undergoes terminal erythroid maturation after activation of an estradiol-inducible form of GATA-1. We made several findings with regards to the role of GATA-1 in Ahsp gene regulation. First, GATA-1 and its cofactor, Friend of GATA-1 (FOG-1), bind directly to the Ahsp locus at regions that contain conserved GATA consensus motifs and are predicted to be important erythroid regulatory elements by our bioinformatic studies. Second, GATA-1 induces epigenetic changes in chromatin structure that are associated with gene activation, including formation of a DNase I hypersensitive site, hyperacetylation of histones H3 and H4, and methylation of histone H3 lysine-4. Together, these findings begin to establish the DNA region and mechanisms that control Ahsp transcription, allowing for further studies to map the cis elements responsible for population variations in gene expression.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4763-4763
Author(s):  
Donghoon Yoon ◽  
Hyojin Kim ◽  
Minyoung Jang ◽  
Jihyun Song ◽  
Gregory E Arnold ◽  
...  

Abstract Hypoxia regulates erythropoiesis and other essential processes via hypoxia-inducible transcription factors (HIFs). HIFs are heterodimers that consist of an α subunit (3 isotypes with significant homology; HIF-1α, HIF-2α, HIF-3α), and a common b-subunit; HIF-1 and HIF-2, in some instances exhibiting tissue- and gene-specific gene regulation. Erythropoietin (EPO) was the first identified HIF-1 target gene with the defined HIF-1 binding sequence. However, subsequent works suggested that HIF-2 also regulates EPO transcription and that there are other regulatory elements of EPO gene (i.e. Kidney Inducible Element KIE, Negative Regulatory Element NRE, and Negative Regulatory Liver specific Element NRLE). In silico analysis of the human EPO genome found two additional potential HIF-binding elements in the KIE and NRE regions. The comparative analysis of phylogenically conserved sequences of human, mouse, dog, and rat Epo genes further refined these mouse Epo gene HIF-binding elements as mKIE, mNRE1, mNRE2, and mNRLE2. We treated mice in hypoxia chamber (8% O2) and monitored changes of Epo mRNA levels in liver, kidney, brain, spleen, and bone marrow. All tested tissues increased Epo transcription during hypoxia. Bone marrow, spleen, kidney, and brain showed a peak of induction of Epo transcript at 3 hours of hypoxia treatment, while liver reached the highest level at 6 hours. Mice were sacrificed and organs were harvested, and in vivo chromatin immunoprecipitation (ChIPs) was performed with antibodies against HIF-1α and HIF- 2α and tissue-specific binding regions were defined. The results from these studies are summarized below. HIF-1 mKIE rnNRE mNRE2 mNRLE2 Norm Hyp Norm Hyp Norm Hyp Norm Hyp Liver − + − − + − ? ? Kidney − + − − + − + − Brain − + − − − + − + BM − + − − − − − + Splsen − + − − − − − + HIF-2 mKIE mNRE mNRE2 mNRLE2 Norm Hyp Norm Hyp Norm Hyp Norm Hyp “+” denotes presence and “-” absence of binding of HIF-1 and HIF-2, “?” – indicates inconclusive results. “Norm” - normoxia, “Hyp” - hypoxia. Liver − + − − − + − + Kidney + − − − + − ? ? Brain − − − − − − − + BM − − − − − − + − Spleen − + − − − − − + In conclusion, we demonstrate the differential hypoxia-induced binding of HIF-1 and HIF-2 at different HIF binding elements in the tissues known to express Epo. Further studies will be required to define the function of these HIF-1 and HIF-2 binding elements in tissue specific Epo expression and their role in health and disease.


2007 ◽  
Vol 274 (1619) ◽  
pp. 1685-1691 ◽  
Author(s):  
Andrew E Fidler ◽  
Kees van Oers ◽  
Piet J Drent ◽  
Sylvia Kuhn ◽  
Jakob C Mueller ◽  
...  

Polymorphisms in several neurotransmitter-associated genes have been associated with variation in human personality traits. Among the more promising of such associations is that between the human dopamine receptor D4 gene ( Drd4 ) variants and novelty-seeking behaviour. However, genetic epistasis, genotype–environment interactions and confounding environmental factors all act to obscure genotype–personality relationships. Such problems can be addressed by measuring personality under standardized conditions and by selection experiments, with both approaches only feasible with non-human animals. Looking for similar Drd4 genotype–personality associations in a free-living bird, the great tit ( Parus major ), we detected 73 polymorphisms (66 SNPs, 7 indels) in the P. major Drd4 orthologue. Two of the P. major Drd4 gene polymorphisms were investigated for evidence of association with novelty-seeking behaviour: a coding region synonymous single nucleotide polymorphism (SNP830) and a 15 bp indel (ID15) located 5′ to the putative transcription initiation site. Frequencies of the three Drd4 SNP830 genotypes, but not the ID15 genotypes, differed significantly between two P. major lines selected over four generations for divergent levels of ‘early exploratory behaviour’ (EEB). Strong corroborating evidence for the significance of this finding comes from the analysis of free-living, unselected birds where we found a significant association between SNP830 genotypes and differing mean EEB levels. These findings suggest that an association between Drd4 gene polymorphisms and animal personality variation predates the divergence of the avian and mammalian lineages. Furthermore, this work heralds the possibility of following microevolutionary changes in frequencies of behaviourally relevant Drd4 polymorphisms within populations where natural selection acts differentially on different personality types.


Sign in / Sign up

Export Citation Format

Share Document