scholarly journals Properties of Binuclear Rhodium(II) Complexes and Their Antibacterial Activity

1996 ◽  
Vol 3 (4) ◽  
pp. 185-195 ◽  
Author(s):  
Florian P. Pruchnik ◽  
Małgorzata Bień ◽  
Tadeusz Lachowicz

Binuclear rhodium(II) complexes [Rh2Cl2(μ-OOCR)2(N-N)2], [Rh2(μ-OOCR)2(N-N)2(H2O)2](RCOO)2 and [Rh2Cl2(μ-OOCCH3)(terpy)2](H3O)Cl2.9H2O (R = H, Me, Bun,ph, PhCHOH; N-N = 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (dmp) and 6,7-dimethyl-2,3- di(2-pyridyl)quinoxaline (dmpq); terpy 2,2′:6′,2′′-terpyridine) have been synthesized and their structure and properties have been studied by electronic, IR and H1 NMR spectroscopy. Antibacterial activity of these complexes against Staphylococcus aureus and Escherichia coli has been investigated. The most active antibacterial agents against S. aureus were [Rh2(OOCPh)2(phen)2(H2O)2]2+, [Rh2(OOCPh)2(dmpq)2(H2O)2]2+, [Rh2(OOCBu)2(phen)2(H2O)2]2+ and [Rh2-(OOCBu)2(bpy)2(H2O)2]2+ which were considerably more active than the appropriate nitrogen ligands. The complexes show rather low activity against E. coli.

1997 ◽  
Vol 4 (2) ◽  
pp. 81-88 ◽  
Author(s):  
Małgorzata Bień ◽  
Tadeusz M. Lachowicz ◽  
Agnieszka Rybka ◽  
Florian P. Pruchnik ◽  
Lilianna Trynda

Binuclear rhodium(II) complexes [Rh2Cl2(μ-OOCR)2(N-N)2] {R = H, Me; N-N = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen)} and [Rh2(μ-OOCR)2(N-N)2(H2O)2](RCOO)2 (R = Me, Et;) have been synthesized and their structure and properties have been studied by electronic, IR and H1 NMR spectroscopy. Antibacterial activity of these complexes against Escherichia coli and Staphylococcus aureus has been investigated. The most active antibacterial agents against E. coli were [Rh2Cl2(μ-OOCR)2(N-N)2] and [Rh2(μ-OOCR)2(N-N)2(H2O)2](RCOO)2 {R = H and Me} which were considerably more active than the appropriate nitrogen ligands. The complexes show low activity against S. aureus. The activity of the complexes [Rh2(OOCR)2(N-N)2(H2O)2](OOCR)2 against E. coli decreases in the series: R=H≅CH3>C2H5>C3H7≅C4H9. The reverse order was found in the case of S. aureus.


2021 ◽  
Vol 22 (10) ◽  
Author(s):  
ERNILASARI ERNILASARI ◽  
KAMALLIANSYAH WALIL ◽  
FITMAWATI FITMAWATI ◽  
DEWI INDRIYANI ROSLIM ◽  
ZUMAIDAR ZUMAIDAR ◽  
...  

Abstract. Ernilasari, Walil K, Fitmawati, Roslim DI, Zumaidar, Saudah, Rayhannisa. 2021. Antibacterial activity of leaves, flowers, and fruits extract of Etlingera elatior from Nagan Raya District, Indonesia against Escherichia coli and Staphylococcus aureus. Biodiversitas 22: 4457-4464. Etlingera elatior is a medicinal plant that has been used by people in Indonesia, especially Acehnese people. Based on its secondary metabolites, E. elatior can be used as antibacterial agents against Gram-positive and Gram-negative. However, to determine the antibacterial activity of E. elatior, the parts of E. elatior that have been used are leaves, flowers, and fruits. This study was aimed to determine the best concentration of ethanol extract of leaves, flowers, and fruits of E. elatior as an inhibitor against Escherichia coli and Staphylococcus aureus. The extract was made by the maceration method with 70% ethanol as a solvent. Antibacterial activity test was carried out by the diffusion agar method using concentrations of 0.5%, 1%, 1.5% and 2%. The results showed that the fruit extract of E. elatior has antibacterial activity with an effective inhibitory zone at a concentration of 2% is 8.4 mm (E. coli) and 2.4 mm (S. aureus). Meanwhile, antibacterial activity the extract of leaves and flowers against E. elatior cannot determine yet. Identification of leaves, flowers and fruits extract of E. elatior using GC-MS (gas chromatography-mass spectroscopy) showed 56 compounds were detected.


2016 ◽  
Vol 5 (03) ◽  
pp. 4879
Author(s):  
Srikala Ganapathy* ◽  
Karpagam S.

Rise of antibiotic resistant pathogenic bacteria namely Methicillin Resistant Staphylococcus aureus (MRSA) and Multiple drug resistant Escherichia coli (MDR E. coli results in reduced efficacy of currently used antibacterial agents. Medicinal plants serve as potential targets for biologically effective antibacterial agents. The present study determined the phytochemical and invitro antibacterial activity of ethanol, chloroform, hexane and water extracts of whole plant of Andrographis paniculata against MRSA and MDR Escherichia coli. Zone of inhibition diameters were measured. Compared to all the extracts, ethanolic extract showed highest activity. The antibacterial activity was absent in hexane and water extracts. Chloroform extracts showed moderately good activity. The antibacterial compounds found in ethanolic extract were flavanoids, saponins and alkaloids.


2019 ◽  
Vol 7 (3) ◽  
pp. 167
Author(s):  
Delpris Piter ◽  
Esther D Angkouw ◽  
Fitje Losung

Starfish is one of the species of the asteroidean class, and is grouped into phylum echinoderms. Echinoderms consist of approximately 6000 species and all live in sea water. Starfish is one source bioactive compounds. Active compounds from starfish have been known to have activities antioxidant, antibacterial, anti-inflammatory, antifungal and immunostimulatory, there are also blue starfish that are potential as antitumor and antibacterial agents. This study aims to obtain crude extracts from several types of starfish, and testing the antibacterial activity of crude starfish extracts against bacteria Streptococcus agalactiae, Escherichia coli and  Staphylococcus aureus. Test the antibacterial activity of crude starfish extracs Protoreaster nodosus, Achaster tipycus, dan Linckia laevigata against bacteria E. coli, S. aureus, dan S. agalactiae use the agar diffusion method by means of a well.  L. l extract  can inhibit bacteria e. coli at an extract concentration of 1000 mg/ml with a diameter of inhibitory zone 11.0 mm, whereas at a concentration of 750 mg/ml the test bacteria can still grow on the bacteria S. agalactiae and S. aureus can still grow even though the extract has be given  L. l Keywords: Potential Starfish, Antibacterial Activity, Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae Bintang laut merupakan salah satu spesies dari kelas Asteroidea, dan dikelompokkan kedalam filum Echinodermata. Filum Echinodermata  terdiri atas kurang lebih 6000 spesies dan semuanya hidup di air laut. Bintang laut  merupakan salah satu sumber penghasil senyawa bioaktif. Senyawa aktif dari bintang laut telah diketahui memiliki aktivitas antioksidan, antibakteri, antiinflamasi, antifungi dan imunostimulator, ada juga bintang laut biru yang potensial sebagai antitumor dan agen antibakteri. Penelitian ini bertujuan untuk mendapatkan ekstrak kasar dari beberapa jenis bintang laut, dan menguji aktivitas antibakteri ekstrak kasar bintang laut terhadap bakteri Streptococcus agalactiae, Escherichia coli dan  Staphylococcus aureus. Uji aktivitas antibakteri dari ekstrak kasar bintang laut Protoreaster nodosus, Achaster tipycus, dan Linckia laevigata terhadap bakteri E. coli, S. aureus, dan S. agalactiae mengggunakan metode difusi agar dengan cara sumur. Ekstrak L. l mampu menghambat bakteri E.coli pada konsentrasi ekstrak 1.000 mg/ml dengan diameter zona hambat 11.0 mm, sedangkan pada konsentrasi 750 mg/ml bakteri uji masih bisa bertumbuh pada bakteri S. agalactiae dan S. aureus masih dapat bertumbuh walaupun telah diberikan ekstrak L. l.Kata Kunci : Potensi Bintang Laut, Aktivitas Antibakteri, Streptococcus agalactiae, Escherichia coli and  Staphylococcus aureus


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2018 ◽  
Vol 13 (7) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Subrat Kumar Bhattamisra ◽  
Chew Hui Kuean ◽  
Lee Boon Chieh ◽  
Vivian Lee Yean Yan ◽  
Chin Koh Lee ◽  
...  

The antibacterial activity of geraniol and its effect in combination with ampicillin, amoxicillin and clarithromycin against Staphylococcus aureus, Escherichia coli and Helicobacter pylori was tested. The minimum inhibitory concentrations (MICs) and combinatory effects of geraniol against the bacteria were assessed by using the modified broth microdilution and checkerboard assay, respectively. The combinatory effect is expressed as fractional inhibitory concentration index (FICI). The MIC of geraniol against S. aureus, E. coli and H. pylori was found to be 11200, 5600, and 7325 μg/mL, respectively. A significant synergistic effect was observed with geraniol and ampicillin against S. aureus with FICI in the range 0.19 to 0.32. Geraniol and ampicillin exhibited a partial synergistic effect against E. coli. A similar effect was observed with geraniol and clarithromycin against S. aureus. A partial synergistic effect was observed with clarithromycin and geraniol against H. pylori with the FICI value in the range 0.86 to 0.89. An additive effect was observed with geraniol and amoxicillin combination against H. pylori. However, the amoxicillin and clarithromycin dose was reduced by thirty-two fold when combined with geraniol against H. pylori. The anti- H. pylori effect of geraniol with clarithromycin and amoxicillin could be of potential interest in the treatment of H. pylori infection and associated ulcers in humans. Further, geraniol, in combination with other antibiotics, has substantial therapeutic potential against S. aureus and E.coli infection.


2018 ◽  
Vol 81 (12) ◽  
pp. 1988-1996 ◽  
Author(s):  
JIANYU WANG ◽  
MAOMAO MA ◽  
JUN YANG ◽  
LONG CHEN ◽  
PING YU ◽  
...  

ABSTRACT In the present study, the antibacterial activity of monocaprylin in comparison with sodium benzoate and potassium sorbate against Staphylococcus aureus and Escherichia coli was assessed by measuring MIC, MBC, effect of pH on MIC, and incubation temperature on bactericidal efficacy. Results showed that monocaprylin exhibited an excellent antibacterial activity against both strains, with the lowest MIC and MBC of 1.28 mg/mL. A MIC of monocaprylin remained unchanged despite the pH values of culture medium, ranging from 5 to 9, unlike that of potassium sorbate or sodium benzoate. Furthermore, monocaprylin at MBC effectively reduced the population of E. coli and S. aureus by >5.5 log CFU/mL at 25°C within 6 h and decreased E. coli by approximately 5.0 log CFU/mL and S. aureus by 2.9 log CFU/mL at 12 h. The underlying mechanism of monocaprylin was then investigated by measuring β-galactosidase activity, membrane potential, release of cellular contents, scanning electron microscopy, and transmission electron microscopy observations. Results indicated that monocaprylin killed E. coli by the rapid change in permeability and integrity of cell membrane, leading to decline of membrane potential, leakage of nucleic acids and proteins, and ultimately cell membrane disintegration and lysis. On the other hand, monocaprylin might exert its antibacterial activity against S. aureus mainly by diffusing across the cell wall, collapsing the cell membrane, and disturbing the order of intracellular contents. These findings indicated that monocaprylin had better antibacterial ability compared with traditional synthetic preservatives and might be a potential antibacterial additive independent of pH.


Jurnal MIPA ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 129
Author(s):  
Megawati S. Saroinsong ◽  
Febby E. F. Kandou ◽  
Adelfia Papu ◽  
Marina F. O. Singkoh

Penelitian ini bertujuan untuk menguji daya hambat dari ekstrak metanol beberapa jenis porifera terhadap pertumbuhan bakteri E. coli dan S. aureus. Pengujian aktivitas antibakteri menggunakan metode Kirby-Bauer, yaitu dilakukan dengan mengukur zona hambat di sekeliling cakram kertas. Ekstrak Haliclona sp dapat menghambat pertumbuhan S. aureus pada konsentrasi ekstrak 30%, 60% dan 90% dengan hasil pengukuran diameter zona hambat 13.50 mm, 20.67 mm dan 27.33 mm; serta menghambat pertumbuhan E. coli dengan diameter zona hambat 10.08 mm, 12.83 mm dan 14.17 mm. Daya hambat ekstrak Agelas sp terhadap S. aureus menunjukkan diameter zona hambat 8.33 mm dan hanya menunjukkan pada konsentrasi ekstrak 90%, sementara daya hambat ekstrak Agelas sp pada konsentrasi 30%, 60% dan 90% terhadap E. coli menunjukkan diameter zona hambat sebesar 7.67 mm, 10.17 mm dan 14.17 mm. Daya hambat Spheciospongia sp terhadap S. aureus dan E. coli hanya terlihat pada konsentrasi ekstrak sebesar 90% dengan diameter zona hambat adalah 8.42 mm dan 8.75 mm. Berdasarkan hasil yang diperoleh, dapat disimpulkan bahwa ekstrak Haliclona sp memiliki potensi aktivitas antibakteri yang dapat digunakan sebagai bahan dasar pembuatan obat antibiotik.This research aimed to test the inhibition capabilities of methanol extract from several kinds of Porifera on Escherichia coli and Staphylococcus aureus growth. The antibacterial activity test using the Kirby-Bauer method, which delivered by measuring the inhibition zone around paper disc. The extract of Haliclona sp can inhibit the S. aureus growth at 30%, 60% and 90% of extracts concentration with the measurement of inhibition zone diameters are 13.50 mm, 20.67 mm and 27.33 mm; also inhibit the E. coli growth with inhibition zone diameters are 10.08 mm, 12.83 mm and 14.17 mm. The inhibition capability of Agelas sp extract on S. aureus shows that the inhibition zone diameters is 8.83 mm and only appear at 90% of extracts concentration, meanwhile the inhibition capability of Agelas sp extract at concentration 30%, 60% and 90% on E. coli shows diameters of inhibition zone are 7.67 mm, 10.17 mm and 14.17 mm. The inhibition capability of Spheciospongia sp on S. aureus and E. coli only occurred at 90% of extracts concentration with inhibition zone diameters 8.42 mm and 8.75 mm. Based on the results, it can be assumed that extracts of Haliclona sp has a potential antibacterial activity that can be used as a basic ingredients for antibiotic medicine.


Biocelebes ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 90-97
Author(s):  
Gaby Maulida Nurdin

This study aimed to determine the effect of concentration ethanol extract from tembelakan leaf (Lantana camara Linn)  on bacteria growth of Staphylococcus aureus and Escherichia coli. Extraction was done by maceration using ethanol 96% and then separated using rotary evaporator. Antibacterial activity test of the ethanol extract by Well agar diffusion method. Variation in crude extract saponin used in this study was 5%, 10%, 15%, 20%, 25% and positive controls were used for comparison with Amoxicilin and Chloramphenicole concentration of 25 µg/mL and DMSO as a negative control. The results of antibacterial activity test is indicated by the formation of growth inhibitory region S. aureus and E. coli. The result of growth inhibitory regions was analyzed by One way ANOVA. One way ANOVA test results indicate that there are effects of ethanol extract concentration of tembelekan leaf (L. camara Linn) against S. aureus and E. coli. Effective concentration of ethanol extract tembelekan leaf (L. camara Linn) when compared with positive control to inhibit the growth of S. aureus and E. coli is at 25% with a relatively strong antibacterial activity. Test with phytochemicals screening method which is showed that tembelekan leaf contains the flavanoid, saponins, and tannins compounds as antibacterial


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Michele Sumampouw

Abstract: The aim of this study is to investigate the antibacterial effect of endophytic fungi originated from the root of mangrove Rhizophora stylosa growing on Mangrove Plantation Area around DAS Simpang 5 Jl. Piere Tendean Manado. The method of this research was using combination of PDA and NA media. Two species of endophytic fungi were extracted from the root of R. stylosa, black mycelium fungi as isolate A and brown mycelium fungi as isolate B. The activities of both isolates were tested against pathogenic bacteria Staphylococcus aureus and Escherichia coli. The result showed the same inhibition zone of isolate A and B to S. aureus, while, isolate A showed bigger the inhibition zone in comparison to isolate B against E. coli. As a conclusion, the endophytic fungi taken from the root of R. stylosa have antibacterial activity toward S. aureus and E. coli. Keywords: endophytic fungi, Rhizophora stylosa, antibacterial, Staphylococcus aureus, Escherichia coli.   Abstrak: Penelitian ini bertujuan untuk melihat adanya efek antibakteri dari jamur endofit yang diambil dari akar bakau Rhizophora stylosa yang ditanam di sekitar Perairan Daerah Aliran Sungai Simpang Lima Jl. Piere Tendean Manado. Metode penelitian dilakukan dengan menggunakan kombinasi media Potato Dextrose Agar (PDA) dan Nutrient Agar (NA). Dari akar bakau R. stylosa diperoleh dua  jenis jamur endofit yaitu isolat A dengan karateristik miselium jamur berwarna hitam dan isolat B yang dengan karakteristik miselium berwarna coklat. Kedua isolat ini selanjutnya diujikan aktivitasnya terhadap bakteri Staphylococcus aureus dan Escherichia coli. Hasil penelitian menunjukkan isolat A dan B memberikan  zona hambat yang sama terhadap bakteri Staphylococcus aureus dan pada bakteri Escherichia coli isolat A menunjukkan diameter zona hambat yang lebih besar dibandingkan isolat B. Kesimpulan, Jamur endofit yang diisolasi dari akar bakau R. Stylosa memiliki efek antibakteri terhadap pertumbuhan bakteri S. aureus dan E. coli. Kata kunci: jamur endofit, Rhizophopra stylosa, antibakteri, Staphylococcus aureus, Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document