scholarly journals A fundamental special-relativistic theory valid for all real-valued speeds

1984 ◽  
Vol 7 (3) ◽  
pp. 565-589
Author(s):  
Vedprakash Sewjathan

This paper constitutes a fundamental rederivation of special relativity based on thec-invariance postulate but independent of the assumptionds′2=±ds2(Einstein [1], Kittel et al [2], Recami [3]), the equivalence principle, homogeneity of space-time, isotropy of space, group properties and linearity of space-time transformations or the coincidence of the origins of inertial space-time frames. The mathematical formalism is simpler than Einstein's [4] and Recami's [3]. Whilst Einstein's subluminal and Recami's superluminal theories are rederived in this paper by further assuming the equivalence principle and “mathematical inverses” [4,3], this paper derives (independent of these assumptions) with physico-mathematical motivation an alternate singularity-free special-relativistic theory which replaces Einstein's factor[1/(1−V2/c2)]12and Recami's extended-relativistic factor[1/(V2/c2−1)]12by[(1−(V2/c2)n)/(1−V2/c2)]12, wherenequals the value of(m(V)/m0)2as|V|→c. In this theory both Newton's and Einstein's subluminal theories are experimentally valid on account of negligible terms. This theory implies that non-zero rest mass luxons will not be detected as ordinary non-zero rest mass bradyons because of spatial collapse, and non-zero rest mass tachyons are undetectable because they exist in another cosmos, resulting in a supercosmos of matter, with the possibility of infinitely many such supercosmoses, all moving forward in time. Furthermore this theory is not based on any assumption giving rise to the twin paradox controversy. The paper concludes with a discussion of the implications of this theory for general relativity.

Author(s):  
David M. Wittman

The equivalence principle is an important thinking tool to bootstrap our thinking from the inertial coordinate systems of special relativity to the more complex coordinate systems that must be used in the presence of gravity (general relativity). The equivalence principle posits that at a given event gravity accelerates everything equally, so gravity is equivalent to an accelerating coordinate system.This conjecture is well supported by precise experiments, so we explore the consequences in depth: gravity curves the trajectory of light as it does other projectiles; the effects of gravity disappear in a freely falling laboratory; and gravitymakes time runmore slowly in the basement than in the attic—a gravitational form of time dilation. We show how this is observable via gravitational redshift. Subsequent chapters will build on this to show how the spacetime metric varies with location.


2021 ◽  
Vol 19 (4) ◽  
pp. 01-14
Author(s):  
Meriama Hansali Mebarki

The reinforcement sensitivity theory lacks basic sources of any human experience :time, place, and learning contexts that have shaped the reinforcement; therefore I have assumed a missing link in Gray's framework based on special relativity relying on the «what, where, and when of happenning»? as major resources of human conscious experience, which under punishment or reward exceed the sensitivity to pleasant or unpleasant stimuli transcending therefore the Weber law, that's why I called it: Psychological Space-Time Reinforcement Sensitivity “PSTRS” axis. The lasts explains BAS and BIS systems sensitivity to reinforcement across the cognitive space-time continuum of episodic memory, and not only across the two great dimensions of fear/anxiety and defensive distance of the McNaughton & Corr model of 2004. So, based on the disruption of the high-sensitivity information processing system in the brain, the four-dimensional conscious experience is distorted by its underlying sources and context. Thus, one of the timedominating records prevents the individual from overcoming the present., such in depression, obsessive compulsive disorder and post-traumatic stress disorder (psychological sensitivity to the past). These temporal records clearly lose their sequence and associative nature in dissociative symptoms due to the disruption of the most important milestone on which Einstein's physics was based. Consequently, psychological space-time reinforcement sensitivity supposes that psychological disorders can be interpreted according to the laws of special relativity (acceleration / deceleration), but this seems more complicated when it comes to mental disorders where the self is disturbed on its spatio-temporal axis as observed in schizophrenia. Schizophrenia looks like a three-componements disorder characterized by a disruption of the experience of time, place and self, which could be asummed up as a “self space-time disturbance". Notably schizophrenic patients appear losing the ability to gather in a dynamic way these componements, as if the world seemed missig the gestalt characteristic or fragmented. The past felt like an inevitable destiny inhibits the direction towards the future; sometimes disorient the self to the point of feeling lost, as if the psychological time slows down to the point of feeling separated from the « now » the physical time. So are we dealing with an Euclidian space? The article attempts to provide a non-traditional interpretation of mental disorders by including general relativity in psychological studies, based on the neurobiological bases involved in the spatio-temporal processing of the conscious experience in the quantum brain.


2019 ◽  
pp. 265-284
Author(s):  
Steven J. Osterlind

This chapter provides the context for the early twentieth-century events contributing to quantification. It was the golden age of scientific exploration, with explorers like David Livingstone, Sir Richard Burton, and Sir Ernest Shackleton, and intellectual pursuits, such as Hilbert’s set of unsolved problems in mathematics. However, most of the chapter is devoted to discussing the last major influencer of quantification: Albert Einstein. His life and accomplishments, including his theory of relativity, make up the final milestone on our road to quantification. The chapter describes his time in Bern, especially in 1905, when he published several famous papers, most particularly his law of special relativity, and later, in 1915, when he expanded it to his theory of general relativity. The chapter also provides a layperson’s description of the space–time continuum. Women of major scientific accomplishments are mentioned, including Madame Currie and the mathematician Maryam Mirzakhani.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Mark Zilberman ◽  

The “Doppler boosting / de-boosting” relativistic effect increases / decreases the apparent luminosity of approaching / receding sources of radiation. This effect was analyzed in detail within the Special Relativity framework and was confirmed in many astronomical observations. It is however not clear if “Doppler boosting / de-boosting” exists in the framework of General Relativity as well, and if it exists, which equations describe it. The “Einstein’s elevator” and Einstein’s “Equivalence principle” allow to obtain the formula for “Doppler boosting / de-boosting” for a uniform gravitational field within the vicinity of the emitter/receiver. Under these simplified conditions, the ratio ℳ between apparent (L) and intrinsic (Lo) luminosity can be conveniently represented using source’s spectral index α and gravitational redshift z as ℳ(z, α) ≡ L/Lo=(z+1)^(α-3). This is the first step towards the complete set of equations that describe the gravitational "Doppler boosting / de-boosting" effect within the General Relativity framework including radial gravitational field and arbitrary values of distance h between emitter and receiver.


Author(s):  
Ahmed Farag Ali

In this paper, we investigate how Rindler observer measures the universe in the ADM formalism. We compute his measurements in each slice of the space-time in terms of gravitational red-shift which is a property of general covariance. In this way, we found special relativity preferred frames to match with the general relativity Rindler frame in ADM formalism. This may resolve the widely known incompatibility between special relativity and general relativity on how each theory sees the red-shift. We found a geometric interpretation of the speed of light and mass.


2018 ◽  
pp. 19-22
Author(s):  
Alvaro De Rújula

Galileo’s and Einstein’s Special and General Relativity are introduced. So is the equivalence principle between gravity and acceleration, the basic assumption of general relativity. A first encounter with the twin paradox of Einstein’s relativity, also called the clock paradox. The twins are further discussed in a subsequent chapter (16).


2021 ◽  
pp. 1-5
Author(s):  
Chun-Xuan Jiang ◽  

Using space-time ring we establish the mathematical theory of space-time with subluminal and superluminal coexistence(SASC) and ILS [1]. Using two methods we deduce the new gravitational formula. Tardyonic rotating motion produces the centrifugal force ,but tachyonic rotating motion produces the centripetal force, that is gravity. Using it we establish the expansion theory of the universe and suggest the new universe model. We prove that in the universe there are no dark matter and no dark energy. New gravitational formula changes all that. Multiverse and gravitational waves do not exist. Theory of everything has the two forces: (1) the subluminal force (electromagnetism and weak force) and (2) superluminal force(gravity and strong force).We prove that equivalence principle does not exist.Therefore we prove that general relativity is the biggest wrong theory [2]


2021 ◽  
Author(s):  
James F. Woodward

“Breakthrough” advanced propulsion can only take place with a correct understanding of the role of inertia in general relativity. Einstein was convinced that inertia and gravitation were the obverse and reverse of the coin. The most general statement of the principle of relativity, captured in his Equivalence Principle and the gravitational induction of inertia. His ideas and how they have fared are reprised. A rest mass fluctuation that is expected when inertia is gravitationally induced is then mentioned that can be used for propulsion. Recent work supported by National Innovative Advanced Concepts Phase 1 and 2 NASA grants to determine whether thrusters based on gravitationally induced inertia can actually be made to work is presented. A recent design innovation has dramatically increased the thrust produced by these Mach Effect Gravity Assist (MEGA) impulse engines.


Sign in / Sign up

Export Citation Format

Share Document