Space-time transformations in six-dimensional special relativity

1982 ◽  
Vol 15 (6) ◽  
pp. L255-L257 ◽  
Author(s):  
E A B Cole ◽  
S A Buchanan
1984 ◽  
Vol 7 (3) ◽  
pp. 565-589
Author(s):  
Vedprakash Sewjathan

This paper constitutes a fundamental rederivation of special relativity based on thec-invariance postulate but independent of the assumptionds′2=±ds2(Einstein [1], Kittel et al [2], Recami [3]), the equivalence principle, homogeneity of space-time, isotropy of space, group properties and linearity of space-time transformations or the coincidence of the origins of inertial space-time frames. The mathematical formalism is simpler than Einstein's [4] and Recami's [3]. Whilst Einstein's subluminal and Recami's superluminal theories are rederived in this paper by further assuming the equivalence principle and “mathematical inverses” [4,3], this paper derives (independent of these assumptions) with physico-mathematical motivation an alternate singularity-free special-relativistic theory which replaces Einstein's factor[1/(1−V2/c2)]12and Recami's extended-relativistic factor[1/(V2/c2−1)]12by[(1−(V2/c2)n)/(1−V2/c2)]12, wherenequals the value of(m(V)/m0)2as|V|→c. In this theory both Newton's and Einstein's subluminal theories are experimentally valid on account of negligible terms. This theory implies that non-zero rest mass luxons will not be detected as ordinary non-zero rest mass bradyons because of spatial collapse, and non-zero rest mass tachyons are undetectable because they exist in another cosmos, resulting in a supercosmos of matter, with the possibility of infinitely many such supercosmoses, all moving forward in time. Furthermore this theory is not based on any assumption giving rise to the twin paradox controversy. The paper concludes with a discussion of the implications of this theory for general relativity.


1991 ◽  
Vol 32 (7) ◽  
pp. 1788-1795 ◽  
Author(s):  
Daniel Zerzion ◽  
L. P. Horwitz ◽  
R. I. Arshansky

2015 ◽  
Vol 5 (3) ◽  
pp. 699-724
Author(s):  
Geraldo Andrello ◽  
Antonio Guerreiro ◽  
Stephen Hugh-Jones

Abstract The multi-ethnic and multilingual complexes of the Upper Rio Negro and the Upper Xingu share common aspects that frequently emerge in ethnographies, including notions of descent, hierarchical social organization and ritual activities, as well as a preference for forms of exogamy and the unequal distribution of productive and ritual specialties and esoteric knowledge. In this article we investigate how the people of both regions conceive of their humanity and that of their neighbours as variations on a shared form, since in both regions ritual processes for negotiating positions and prerogatives seems to take the place of the latent state of warfare typical of the social life of other Amazonian peoples. In this article we will synthesize, for each region, the spatio-temporal processes that underscore the eminently variable constitution of collectivities, seeking, in conclusion, to isolate those elements that the two regions have in common.


2007 ◽  
Vol 22 (13) ◽  
pp. 2441-2459 ◽  
Author(s):  
DIMITRI POLYAKOV

We observe and study new nonlinear global space–time symmetries of the full ghost + matter action of RNS superstring theory. We show that these surprising new symmetries are generated by the special worldsheet currents (physical vertex operators) of RNS superstring theory, violating the equivalence of superconformal ghost pictures. We review the questions of BRST-invariance and nontriviality of picture-dependent vertex operators and show their relation to hidden space–time symmetries and hidden space–time dimensions. In particular, we relate the space–time transformations, induced by picture-dependent currents, to the symmetries observed in the 2T physics approach.


2011 ◽  
Vol 84 (2) ◽  
Author(s):  
Roberto Casalbuoni ◽  
Joaquim Gomis ◽  
Kiyoshi Kamimura

2021 ◽  
Vol 19 (4) ◽  
pp. 01-14
Author(s):  
Meriama Hansali Mebarki

The reinforcement sensitivity theory lacks basic sources of any human experience :time, place, and learning contexts that have shaped the reinforcement; therefore I have assumed a missing link in Gray's framework based on special relativity relying on the «what, where, and when of happenning»? as major resources of human conscious experience, which under punishment or reward exceed the sensitivity to pleasant or unpleasant stimuli transcending therefore the Weber law, that's why I called it: Psychological Space-Time Reinforcement Sensitivity “PSTRS” axis. The lasts explains BAS and BIS systems sensitivity to reinforcement across the cognitive space-time continuum of episodic memory, and not only across the two great dimensions of fear/anxiety and defensive distance of the McNaughton & Corr model of 2004. So, based on the disruption of the high-sensitivity information processing system in the brain, the four-dimensional conscious experience is distorted by its underlying sources and context. Thus, one of the timedominating records prevents the individual from overcoming the present., such in depression, obsessive compulsive disorder and post-traumatic stress disorder (psychological sensitivity to the past). These temporal records clearly lose their sequence and associative nature in dissociative symptoms due to the disruption of the most important milestone on which Einstein's physics was based. Consequently, psychological space-time reinforcement sensitivity supposes that psychological disorders can be interpreted according to the laws of special relativity (acceleration / deceleration), but this seems more complicated when it comes to mental disorders where the self is disturbed on its spatio-temporal axis as observed in schizophrenia. Schizophrenia looks like a three-componements disorder characterized by a disruption of the experience of time, place and self, which could be asummed up as a “self space-time disturbance". Notably schizophrenic patients appear losing the ability to gather in a dynamic way these componements, as if the world seemed missig the gestalt characteristic or fragmented. The past felt like an inevitable destiny inhibits the direction towards the future; sometimes disorient the self to the point of feeling lost, as if the psychological time slows down to the point of feeling separated from the « now » the physical time. So are we dealing with an Euclidian space? The article attempts to provide a non-traditional interpretation of mental disorders by including general relativity in psychological studies, based on the neurobiological bases involved in the spatio-temporal processing of the conscious experience in the quantum brain.


2019 ◽  
pp. 265-284
Author(s):  
Steven J. Osterlind

This chapter provides the context for the early twentieth-century events contributing to quantification. It was the golden age of scientific exploration, with explorers like David Livingstone, Sir Richard Burton, and Sir Ernest Shackleton, and intellectual pursuits, such as Hilbert’s set of unsolved problems in mathematics. However, most of the chapter is devoted to discussing the last major influencer of quantification: Albert Einstein. His life and accomplishments, including his theory of relativity, make up the final milestone on our road to quantification. The chapter describes his time in Bern, especially in 1905, when he published several famous papers, most particularly his law of special relativity, and later, in 1915, when he expanded it to his theory of general relativity. The chapter also provides a layperson’s description of the space–time continuum. Women of major scientific accomplishments are mentioned, including Madame Currie and the mathematician Maryam Mirzakhani.


Sign in / Sign up

Export Citation Format

Share Document