scholarly journals Pumping Speed Measurement and Analysis for the Turbo Booster Pump

2004 ◽  
Vol 10 (1) ◽  
pp. 1-13 ◽  
Author(s):  
R. Y. Jou ◽  
S. C. Tzeng ◽  
J. H. Liou

This study applies testing apparatus and a computational approach to examine a newly designed spiral-grooved turbo booster pump (TBP), which has both volume type and momentum transfer type vacuum pump functions, and is capable of operating at optimum discharge under pressures from approximately 1000 Pa to a high vacuum. Transitional flow pumping speed is increased by a well-designed connecting element. Pumping performance is predicted and examined via two computational approaches, namely the computational fluid dynamics (CFD) method and the direct simulation Monte Carlo (DSMC) method. In CFD analysis, comparisons of measured and calculated inlet pressure in the slip and continuum flow demonstrate the accuracy of the calculation. Meanwhile, in transition flow, the continuum model of CFD is unsuitable for calculating such rarefied gas. The pumping characteristics for a full 3D model on a rotating frame in transition and molecular regimes thus are simulated using the DSMC method and then confirmed experimentally. However, when the Knudsen number is in the range 0.5 < Kn < 0.1, neither CFD computation nor DSMC simulation is suitable for analyzing the pumping speed of the turbo booster pump. In this situation, the experimental approach is the most appropriate and effective method for analyzing pumping speed. Moreover, the developed pump is tested using assessment systems constructed according to ISO and JVIS-005 standards, respectively. Comparisons are also made with other turbo pumps. The compared results show that the turbo booster pump presented here has good foreline performance.

Author(s):  
Quanhua Sun ◽  
Feng Li ◽  
Jing Fan ◽  
Chunpei Cai

The micro-scale gas flows are usually low-speed flows and exhibit rarefied gas effects. It is challenging to simulate these flows because traditional CFD method is unable to capture the rarefied gas effects and the direct simulation Monte Carlo (DSMC) method is very inefficient for low-speed flows. In this study we combine two techniques to improve the efficiency of the DSMC method. The information preservation technique is used to reduce the statistical noise and the cell-size relaxed technique is employed to increase the effective cell size. The new cell-size relaxed IP method is found capable of simulating micro-scale gas flows as shown by the 2D lid-driven cavity flows.


2019 ◽  
Author(s):  
Jayesh Sanwal ◽  
Deepak Nabapure ◽  
Sreeram Rajesh ◽  
K Ram Chandra Murthy

The present study is to investigate the behavior of a monoatomic gas enclosed in a cavity with both the top and bottom walls imparting motion to the fluid. The problem is studied for single and double-sided lid-driven flow for various wall velocities as well as parallel and anti-parallel wall motions. These types of flow have many industrial applications such as drying and melt spinning. In contrast to the single-sided flows the vortex patterns obtained in the double-sided flows are different and hence it merits a thorough examination, which is studied in this paper using the Direct Simulation Monte Carlo (DSMC) method. The DSMC method proposed by G.A. Bird is based on the kinetic theory in which the molecular motion is modeled stochastically. The computational model has been implemented in OpenFOAM software using the solver named dsmcFoam. Various flow features have been examined such as eddies and vortices.


2014 ◽  
Vol 15 (1) ◽  
pp. 246-264 ◽  
Author(s):  
Tengfei Liang ◽  
Wenjing Ye

AbstractAiming at simulating micro gas flows with accurate boundary conditions, an efficient hybrid algorithm is developed by combining the molecular dynamics (MD) method with the direct simulation Monte Carlo (DSMC) method. The efficiency comes from the fact that the MD method is applied only within the gas-wall interaction layer, characterized by the cut-off distance of the gas-solid interaction potential, to resolve accurately the gas-wall interaction process, while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer. A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface, hence there is no need for one-to-one mapping between a MD gas molecule and a DSMC simulation particle. Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the “smart-wall model” proposed by Barisiket al.The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem. Both the accuracy and efficiency of the hybrid algorithm are discussed. As an application, the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface. Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models.


Author(s):  
Dilesh Maharjan ◽  
Mustafa Hadj-Nacer ◽  
Miles Greiner ◽  
Stefan K. Stefanov

During vacuum drying of used nuclear fuel (UNF) canisters, helium pressure is reduced to as low as 67 Pa to promote evaporation and removal of remaining water after draining process. At such low pressure, and considering the dimensions of the system, helium is mildly rarefied, which induces a thermal-resistance temperature-jump at gas–solid interfaces that contributes to the increase of cladding temperature. It is important to maintain the temperature of the cladding below roughly 400 °C to avoid radial hydride formation, which may cause cladding embrittlement during transportation and long-term storage. Direct Simulation Monte Carlo (DSMC) method is an accurate method to predict heat transfer and temperature under rarefied condition. However, it is not convenient for complex geometry like a UNF canister. Computational Fluid Dynamics (CFD) simulations are more convenient to apply but their accuracy for rarefied condition are not well established. This work seeks to validate the use of CFD simulations to model heat transfer through rarefied gas in simple two-dimensional geometry by comparing the results to the more accurate DSMC method. The geometry consists of a circular fuel rod centered inside a square cross-section enclosure filled with rarefied helium. The validated CFD model will be used later to accurately estimate the temperature of an UNF canister subjected to vacuum drying condition.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Nadim A. Diab ◽  
Issam A. Lakkis

This paper presents direct simulation Monte Carlo (DSMC) numerical investigation of the dynamic behavior of a gas film in a microbeam. The microbeam undergoes large amplitude harmonic motion between its equilibrium position and the fixed substrate underneath. Unlike previous work in literature, the beam undergoes large displacements throughout the film gap thickness and the behavior of the gas film along with its impact on the moving microstructure (force exerted by gas on the beam's front and back faces) is discussed. Since the gas film thickness is of the order of few microns (i.e., 0.01 < Kn < 1), the rarefied gas exists in the noncontinuum regime and, as such, the DSMC method is used to simulate the fluid behavior. The impact of the squeeze film on the beam is investigated over a range of frequencies and velocity amplitudes, corresponding to ranges of dimensionless flow parameters such as the Reynolds, Strouhal, and Mach numbers on the gas film behavior. Moreover, the behavior of compressibility pressure waves as a function of these dimensionless groups is discussed for different simulation case studies.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Ali Amiri-Jaghargh ◽  
Ehsan Roohi ◽  
Hamid Niazmand ◽  
Stefan Stefanov

Direct simulation Monte Carlo (DSMC) method in low Knudsen rarefied flows at micro/nanoscales remains a big challenge for researchers due to large computational requirements. In this article, the application of the simplified Bernoulli-trials (SBT)/dual grid collision scheme is extended for solving low Knudsen/low speed and low Knudsen/high gradient rarefied micro/nanoflows. The main advantage of the SBT algorithm is to provide accurate calculations using much smaller number of particles per cell, i.e., 〈N〉 ≈ 2, which is quite beneficial for near continuum DSMC simulations where the requirement of fine meshes faces the simulation with serious memory restrictions. Comparing the results of the SBT/dual grid scheme with the no time counter (NTC) scheme and majorant frequency scheme (MFS), it is shown that the SBT/dual grid scheme could successfully predict the thermal pattern and hydrodynamics field as well as surface parameters such as velocity slip, temperature jump and wall heat fluxes. Therefore, we present SBT/dual grid algorithm as a suitable alternative of the standard collision schemes in the DSMC method for typical micro/nanoflows solution. Nonlinear flux-corrected transport (FCT) algorithm is also employed as a filter to extract the smooth solution from the noisy DSMC calculation for low speed/low Knudsen number DSMC calculations.


Author(s):  
Deepak Nabapure ◽  
Ram Chandra Murthy

Abstract The present study investigates the flow behavior of the rarefied gas over a wall-mounted cube. The problem is studied for different cube heights (h) of 9mm and 18mm in the slip and transition regimes. The Direct Simulation Monte Carlo (DSMC) method is employed to evaluate the properties such as velocity, pressure and temperature fields. The Reynolds number (Re) ranges from 403 to 807, and the Knudsen number (Kn) is in the range from 0.05 to 0.103. A typical shock wave is formed in front of the cube. The recirculation length of the vortices normalized with respect to the respective cube heights for Kn = 0.05 and Kn = 0.103 are about 1.11 and 1.95 respectively. Similarly, the center of the vortices is located at about 3.33 and 6.11 times the respective cube heights upstream, for Kn = 0.05 and Kn = 0.103. The local temperature and pressure variations observed upstream of the cube are two orders higher in magnitude and are primarily attributed to strong compressibility effects. The present study paves the way for benchmarking, and forms a basis for understanding the rarefied gas flows over complex geometries.


2019 ◽  
Author(s):  
Sumit Chamling Rai ◽  
Jayesh Sanwal ◽  
K Ram Chandra Murthy

The present work investigates the effects of rarefaction on gas flow patterns in a lid-driven cavity using the simulation package dsmcFoam, on the OpenFOAM platform. Direct Simulation Monte Carlo (DSMC) method is a simulation technique which caters to the regime in between the computationally intensive molecular dynamics solvers, as well as the often inaccurate NS based solvers (applied to the rarefied gas simulations). It was proposed by G.A. Bird which employs the stochastic modelling of particle motion.Simulations are performed and results are verified for the flow of a rarefied gas Argon) for different lid velocities within the domain. The results are presented as streamlines, contours of velocity, pressure and temperature, along with velocities in X and Y directions. They have been found to be in good agreement with the previous experimental and numerical observations. Our simulations show that these eddies are much harder to observe in the rarefied domain, and cannot be observed upto velocities as high as 200m/s in a cavity with aspect ratio 1.


Author(s):  
Masoud Darbandi ◽  
Hassan Akhlaghi ◽  
Abolfazl Karchani ◽  
Soheyl Vakili

In this study, we present a vast boundary condition treatment to simulate gas flow through microfilters using direct simulation Monte Carlo (DSMC) method. We examine the effects of different boundary condition treatments on the density, pressure, and velocity distributions and suggest the best conditions to simulate gas flow through microfilters. We also refine the effects of upstream and downstream locations on the solution. The results show that uniform distributions can be achieved if we apply the inlet/outlet boundary condition at appropriate upstream and downstream distances. We also show that all the suggested boundary conditions suitably predict the pressure drop coefficient factor across the filter. To evaluate the current results they are compared with some available empirical formulations.


Author(s):  
Zhixin Sun ◽  
Zengyao Li ◽  
Yaling He ◽  
Wenquan Tao

The flow field and temperature distributions of free molecular micro-electro-thermal resist jet (FMMR) were studied resorting to DSMC-FVM coupled method. Direct Simulation Monte Carlo (DSMC) method is the most useful tool to simulate the flow field of FMMR and unstructured grid is suitable for the flow simulation in a complicated region with tilted wall surface. DSMC code based on unstructured grid system was developed and then the result was compared with that of structured grid and analytical solution to validate the reliability of the developed code. The DSMC method was then used to simulate the fluid flow in the micro-nozzle (Kn>0.01) and the temperature distribution in the nozzle wall was obtained by the Finite Volume Method (FVM). The Dirichlet-Neumann method was used to couple the wall heat flux and temperature between flow field and solid area. The effect of different income pressure was studied in detail and the results showed that the temperature of solid area changed drastically at different income pressure, so the commonly-adopted method of pre-setting boundary temperature before simulation was unreasonable. The results showed that the influence of boundary layer decreased as the pressure increased.


Sign in / Sign up

Export Citation Format

Share Document