scholarly journals Verifying cell loss requirements in high-speed communication networks

1998 ◽  
Vol 11 (3) ◽  
pp. 319-338
Author(s):  
Kerry W. Fendick ◽  
Ward Whitt

In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster) sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM) approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to determine whether the presence of losses should significantly affect the estimation of server utilization when both losses and utilizations are estimated from data. Overall, our analysis can serve as a basis for determining required observation intervals in order to reach conclusions with a solid statistical basis. Thus our analysis can help plan simulations as well as computer system measurements.

1986 ◽  
Vol 23 (1) ◽  
pp. 256-260 ◽  
Author(s):  
Robert D. Foley

We present some non-stationary infinite-server queueing systems with stationary Poisson departure processes. In Foley (1982), it was shown that the departure process from the Mt/Gt/∞ queue was a Poisson process, possibly non-stationary. The Mt/Gt/∞ queue is an infinite-server queue with a stationary or non-stationary Poisson arrival process and a general server in which the service time of a customer may depend upon the customer's arrival time. Mirasol (1963) pointed out that the departure process from the M/G/∞ queue is a stationary Poisson process. The question arose whether there are any other Mt/Gt/∞ queueing systems with stationary Poisson departure processes. For example, if the arrival rate is periodic, is it possible to select the service-time distribution functions to fluctuate in order to compensate for the fluctuations of the arrival rate? In this situation and in more general situations, it is possible to select the server such that the system yields a stationary Poisson departure process.


1995 ◽  
Vol 32 (4) ◽  
pp. 1103-1111 ◽  
Author(s):  
Qing Du

Consider a single-server queue with zero buffer. The arrival process is a three-level Markov modulated Poisson process with an arbitrary transition matrix. The time the system remains at level i (i = 1, 2, 3) is exponentially distributed with rate cα i. The arrival rate at level i is λ i and the service time is exponentially distributed with rate μ i. In this paper we first derive an explicit formula for the loss probability and then prove that it is decreasing in the parameter c. This proves a conjecture of Ross and Rolski's for a single-server queue with zero buffer.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3143
Author(s):  
Xia Zhou ◽  
Jianqiang Lu ◽  
Xiangpeng Xie ◽  
Chengjie Bu ◽  
Lei Wan ◽  
...  

Accurate prediction of power business communication bandwidth is the premise for the effectiveness of power communication planning and the fundamental guarantee for regular operation of power businesses. To solve the problem of scientifically and reasonably allocating bandwidth resources in smart parks, communication bandwidth prediction technology of intelligent power distribution service for smart parks is proposed in this paper. First, the characteristics of mixed service data arrival rate of power distribution and communication mixed services in smart parks were analyzed. Poisson process and interrupted Poisson process were used to simulate periodic and sudden business of smart parks to realize accurate simulation of the business arrival process. Then, a service arrival rate model based on the Markov modulation Poisson process was constructed. An active buffer management mechanism was used to dynamically discard data packets according to the set threshold and achieve accurate simulation of the packet loss rate during the arrival of smart park business. At the same time, considering the communication service quality index and bandwidth resource utilization, a business communication bandwidth prediction model of smart parks was established to improve the accuracy of business bandwidth prediction. Finally, a smart power distribution room in a smart park was used as an application scenario to quantitatively analyze the relationship between the communication service quality and bandwidth configuration. According to the predicted bandwidth, the reliability and effectiveness of the proposed method were verified by comparison with the elastic coefficient method.


1995 ◽  
Vol 32 (04) ◽  
pp. 1103-1111 ◽  
Author(s):  
Qing Du

Consider a single-server queue with zero buffer. The arrival process is a three-level Markov modulated Poisson process with an arbitrary transition matrix. The time the system remains at level i (i = 1, 2, 3) is exponentially distributed with rate cα i . The arrival rate at level i is λ i and the service time is exponentially distributed with rate μ i . In this paper we first derive an explicit formula for the loss probability and then prove that it is decreasing in the parameter c. This proves a conjecture of Ross and Rolski's for a single-server queue with zero buffer.


1986 ◽  
Vol 23 (01) ◽  
pp. 256-260 ◽  
Author(s):  
Robert D. Foley

We present some non-stationary infinite-server queueing systems with stationary Poisson departure processes. In Foley (1982), it was shown that the departure process from the Mt/Gt/∞ queue was a Poisson process, possibly non-stationary. The Mt/Gt /∞ queue is an infinite-server queue with a stationary or non-stationary Poisson arrival process and a general server in which the service time of a customer may depend upon the customer's arrival time. Mirasol (1963) pointed out that the departure process from the M/G/∞ queue is a stationary Poisson process. The question arose whether there are any other Mt/Gt/∞ queueing systems with stationary Poisson departure processes. For example, if the arrival rate is periodic, is it possible to select the service-time distribution functions to fluctuate in order to compensate for the fluctuations of the arrival rate? In this situation and in more general situations, it is possible to select the server such that the system yields a stationary Poisson departure process.


Author(s):  
Showkat Ahmad Bhat ◽  
Amandeep Singh

Background & Objective: Digital multimedia exchange between different mobile communication devices has increased rapidly with the invention of the high-speed data services like LTE-A, LTE, and WiMAX. However, there are always certain security risks associated with the use of wireless communication technologies. Methods: To protect the digital images against cryptographic attacks different image encryption algorithms are being employed in the wireless communication networks. These algorithms use comparatively less key spaces and accordingly offer inadequate security. The proposed algorithm described in this paper based on Rubik’s cube principle because of its high confusion and diffusion properties, Arnold function having effective scrambling power, blocking cipher with block encryption and permutation powers. The main strength of the proposed algorithm lies in the large key spaces and the combination of different high power encryption techniques at each stage of algorithm. The different operations employed on the image are with four security keys of different key spaces at multiple stages of the algorithm. Results & Conclusion: Finally, the effectiveness and the security analysis results shows that the proposed image encryption algorithm attains high encryption and security capabilities along with high resistance against cryptanalytic attacks, differential attacks and statistical attacks.


2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Andrzej Chydzinski ◽  
Blazej Adamczyk

We present an analysis of the number of losses, caused by the buffer overflows, in a finite-buffer queue with batch arrivals and autocorrelated interarrival times. Using the batch Markovian arrival process, the formulas for the average number of losses in a finite time interval and the stationary loss ratio are shown. In addition, several numerical examples are presented, including illustrations of the dependence of the number of losses on the average batch size, buffer size, system load, autocorrelation structure, and time.


Sign in / Sign up

Export Citation Format

Share Document