scholarly journals Dual mTORC1/2 Blockade Inhibits Glioblastoma Brain Tumor Initiating Cells In Vitro and In Vivo and Synergizes with Temozolomide to Increase Orthotopic Xenograft Survival

2014 ◽  
Vol 20 (22) ◽  
pp. 5756-5767 ◽  
Author(s):  
H. Artee Luchman ◽  
Owen D.M. Stechishin ◽  
Stephanie A. Nguyen ◽  
Xueqing Q. Lun ◽  
J. Gregory Cairncross ◽  
...  
2017 ◽  
Vol 114 (30) ◽  
pp. E6147-E6156 ◽  
Author(s):  
Dou Yu ◽  
Omar F. Khan ◽  
Mario L. Suvà ◽  
Biqin Dong ◽  
Wojciech K. Panek ◽  
...  

Brain tumor-initiating cells (BTICs) have been identified as key contributors to therapy resistance, recurrence, and progression of diffuse gliomas, particularly glioblastoma (GBM). BTICs are elusive therapeutic targets that reside across the blood–brain barrier, underscoring the urgent need to develop novel therapeutic strategies. Additionally, intratumoral heterogeneity and adaptations to therapeutic pressure by BTICs impede the discovery of effective anti-BTIC therapies and limit the efficacy of individual gene targeting. Recent discoveries in the genetic and epigenetic determinants of BTIC tumorigenesis offer novel opportunities for RNAi-mediated targeting of BTICs. Here we show that BTIC growth arrest in vitro and in vivo is accomplished via concurrent siRNA knockdown of four transcription factors (SOX2, OLIG2, SALL2, and POU3F2) that drive the proneural BTIC phenotype delivered by multiplexed siRNA encapsulation in the lipopolymeric nanoparticle 7C1. Importantly, we demonstrate that 7C1 nano-encapsulation of multiplexed RNAi is a viable BTIC-targeting strategy when delivered directly in vivo in an established mouse brain tumor. Therapeutic potential was most evident via a convection-enhanced delivery method, which shows significant extension of median survival in two patient-derived BTIC xenograft mouse models of GBM. Our study suggests that there is potential advantage in multiplexed targeting strategies for BTICs and establishes a flexible nonviral gene therapy platform with the capacity to channel multiplexed RNAi schemes to address the challenges posed by tumor heterogeneity.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Cesar A Garcia ◽  
Adip Guruprasad Bhargav ◽  
Sujan K Mondal ◽  
Karim ReFaey ◽  
Natanael Zarco ◽  
...  

Abstract INTRODUCTION Glioblastoma (GBM) is the deadliest and most common primary brain cancer in adults. Brain tumor-initiating cells (BTICs) are a heterogeneous subset of stem-like, invasive cells that play a critical role in treatment failure and recurrence. METHODS Here, we propose a system to functionally characterize patient-derived BTICs to identify features that will guide assessment of therapeutics in a BTIC subpopulation-specific manner. We established and evaluated 5 BTIC populations based on (1) proliferation, (2) stemness, (3) migration, (4) tumorigenesis, (5) clinical characteristics, and (6) therapeutic sensitivity. RESULTS Overall, in Vitro growth trends reflected in Vivo growth rates. However, a significant difference was found between tumor growth in male versus female mice in 3 BTIC lines (QNS108 P = .0011; QNS120 P < .0001; QNS 140 P < .0001). Differences in survival were observed, where BTICs derived from male and female patients produced faster morbidity in mice of the opposite sex (male derived QNS108 male vs female P = .0039; female derived QNS203 male vs female P = .029). QNS203, which was isolated from a tumor in contact with the anterior subventricular zone, decreased survival at a faster rate compared to other cell lines (n = 10 per line, 5 males/5 females, P < .0001). Stem-like properties of BTICs were assessed via differentiation marker expression, sphere-forming capacity, and detection of canonical marker CD133. Higher CD133 expression correlated with faster in Vitro doubling time and greater tumor burden. Histology reflected similar patient tumor features such as migration across the corpus callosum and cystic formation. BTICs revealed varying responses to therapies (TMZ, Radiation, TRAIL, BMP4) and varied competence to retroviral transduction. CONCLUSION By studying the functional features of BTICs within our model of GBM heterogeneity, it was shown that several factors influenced tumorigenesis and survival. These included original tumor location, stemness, variation in therapeutic sensitivity, and a critical finding for the role of sex, an unexplored area for creating next-generation, sex-specific, and BTIC-specific therapeutics.


2020 ◽  
Author(s):  
Montserrat Lara-Velazquez ◽  
Natanael Zarco ◽  
Anna Carrano ◽  
Jordan Phillipps ◽  
Emily S Norton ◽  
...  

Abstract Background Glioblastomas (GBMs) are the most common primary brains tumors in adults with almost 100% recurrence rate. Patients with lateral ventricle proximal GBMs (LV-GBMs) exhibit worse survival compared to distal locations for reasons that remain unknown. One potential explanation is the proximity of these tumors to the cerebrospinal fluid (CSF) and its contained chemical cues that can regulate cellular migration and differentiation. We therefore investigated the role of CSF on GBM gene expression and the role of a CSF-induced gene, SERPINA3, in GBM malignancy in vitro and in vivo. Methods We utilized patient-derived CSF and primary cultures of GBM brain tumor initiating cells (BTICs). We determined the impact of SERPINA3 expression in glioma patients using TCGA database. SERPINA3 expression changes were evaluated at both the mRNA and protein levels. The effects of knockdown (KD) and overexpression (OE) of SERPINA3 on cell behavior were evaluated by transwell assay (for cell migration), and alamar blue and Ki67 (for viability and proliferation respectively). Stem cell characteristics on KD cells were evaluated by differentiation and colony formation experiments. Tumor growth was studied by intracranial and flank injections. Results GBM CSF induced a significant increase in BTIC migration accompanied by upregulation of the SERPINA3 gene. In patient samples and TCGA data we observed SERPINA3 to correlate directly with brain tumor grade and indirectly with GBM patient survival. Silencing of SERPINA3 induced a decrease in cell proliferation, migration, invasion, and stem cell characteristics, while SERPINA3 overexpression increased cell migration. In vivo, mice orthotopically-injected with SERPINA3 KD BTICs showed increased survival. Conclusions SERPINA3 plays a key role in GBM malignancy and its inhibition results in a better outcome using GBM preclinical models.


2019 ◽  
Vol 116 (38) ◽  
pp. 19098-19108 ◽  
Author(s):  
Yaoqing Shen ◽  
Cameron J. Grisdale ◽  
Sumaiya A. Islam ◽  
Pinaki Bose ◽  
Jake Lever ◽  
...  

Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.


2008 ◽  
Vol 24 (3-4) ◽  
pp. E25 ◽  
Author(s):  
Zhigang Xie ◽  
Lawrence S. Chin

✓ The results of studies conducted in the past several years have suggested that malignant brain tumors may harbor a small fraction of tumor-initiating cells that are likely to cause tumor recurrence. These cells are known as brain tumor stem cells (BTSCs) because of their multilineage potential and their ability to self-renew in vitro and to recapitulate original tumors in vivo. The understanding of BTSCs has been greatly advanced by knowledge of neural progenitor/stem cells (NPSCs), which are multipotent and self-renewing precursor cells for neurons and glia. In this article, the authors summarize evidence that genetic mutations that deregulate asymmetric cell division by affecting cell polarity, spindle orientation, or cell fate determinants may result in the conversion of NPSCs to BTSCs. In addition, they review evidence that BTSCs and normal NPSCs may reside in similar vascularized microenvironments, where similar evolutionarily conserved signaling pathways control their proliferation. Finally, they discuss preliminary evidence that mechanisms of BTSC-associated infiltrativeness may be similar to those underlying the migration of NPSCs and neurons.


2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Melis Savasan Sogut ◽  
Chitra Venugopal ◽  
Basak Kandemir ◽  
Ugur Dag ◽  
Sujeivan Mahendram ◽  
...  

Elk-1, a member of the ternary complex factors (TCFs) within the ETS (E26 transformation-specific) domain superfamily, is a transcription factor implicated in neuroprotection, neurodegeneration, and brain tumor proliferation. Except for known targets, c-fos and egr-1, few targets of Elk-1 have been identified. Interestingly, SMN, SOD1, and PSEN1 promoters were shown to be regulated by Elk-1. On the other hand, Elk-1 was shown to regulate the CD133 gene, which is highly expressed in brain-tumor-initiating cells (BTICs) and used as a marker for separating this cancer stem cell population. In this study, we have carried out microarray analysis in SH-SY5Y cells overexpressing Elk-1-VP16, which has revealed a large number of genes significantly regulated by Elk-1 that function in nervous system development, embryonic development, pluripotency, apoptosis, survival, and proliferation. Among these, we have shown that genes related to pluripotency, such as Sox2, Nanog, and Oct4, were indeed regulated by Elk-1, and in the context of brain tumors, we further showed that Elk-1 overexpression in CD133+ BTIC population results in the upregulation of these genes. When Elk-1 expression is silenced, the expression of these stemness genes is decreased. We propose that Elk-1 is a transcription factor upstream of these genes, regulating the self-renewal of CD133+ BTICs.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dilakshan Srikanthan ◽  
Michael S. Taccone ◽  
Randy Van Ommeren ◽  
Joji Ishida ◽  
Stacey L. Krumholtz ◽  
...  

AbstractDiffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor and the leading cause of brain tumor–related death in children. As several clinical trials over the past few decades have led to no significant improvements in outcome, the current standard of care remains fractionated focal radiation. Due to the recent increase in stereotactic biopsies, tumor tissue availabilities have enabled our advancement of the genomic and molecular characterization of this lethal cancer. Several groups have identified key histone gene mutations, genetic drivers, and methylation changes in DIPG, providing us with new insights into DIPG tumorigenesis. Subsequently, there has been increased development of in vitro and in vivo models of DIPG which have the capacity to unveil novel therapies and strategies for drug delivery. This review outlines the clinical characteristics, genetic landscape, models, and current treatments and hopes to shed light on novel therapeutic avenues and challenges that remain.


Sign in / Sign up

Export Citation Format

Share Document