Abstract PR10: RAD1901, an orally available selective estrogen receptor downregulator, has potent anti-tumor activity in in vitro and in vivo models of ER+ breast cancer

Author(s):  
Teeru Bihani ◽  
Jeffrey Brown ◽  
Gary Hattersley ◽  
Fiona Garner
2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2021 ◽  
Author(s):  
Xu Han ◽  
Xiujuan Qu ◽  
Beixing Liu ◽  
Yizhe Wang ◽  
Yang Cheng ◽  
...  

Abstract Background: Triple negative breast cancer (TNBC) is a tumor characterized by high recurrence and mortality, but without effective targeted therapy. It is urgent to explore new treatment strategy to improve the efficacy of TNBC therapy. Methods: Transcriptomic profiling datasets of TNBC were used for screening TNBC specific gene sets. Drug prediction was performed in Connectivity map (CMap) database. Molecular docking method was used for analyzing drug targets. In vitro and in vivo models of TNBC were constructed to examine the drug efficacy. Results: We screened out Mibefradil, a T-type Ca2+ channel blocker, might be a potential therapeutic drug for TNBC by transcriptomics and bioinformatics analysis, and verified that Mibefradil could inhibit the proliferation of TNBC cells by inducing apoptosis and cell cycle arrest. Furthermore, by network pharmacology and molecular docking analysis, AURKA was predicted as the most possible drug target of Mibefradil. Finally, it was proved that Mibefradil treatment could induce apoptosis by decreasing protein expression and phosphorylation level of AURKA in vitro and in vivo. Conclusions: Mibefradil played anti-cancer role in TNBC cells by targeting to AURKA to induce cell cycle and apoptosis. Our results repurposed Mibefradil as a potential targeted drug of TNBC and provided a fundamental research for a novel strategy TNBC treatment.


Oncotarget ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 4593-4606 ◽  
Author(s):  
Ka-Wai Tam ◽  
Chi-Tang Ho ◽  
Shih-Hsin Tu ◽  
Wen-Jui Lee ◽  
Ching-Shui Huang ◽  
...  

Author(s):  
Kristin A. Altwegg ◽  
Ratna K. Vadlamudi

Breast cancer (BC) is the most ubiquitous cancer in women. Approximately 70-80% of BC diagnoses are positive for estrogen receptor (ER) alpha (ERα). The steroid hormone estrogen [17β-estradiol (E2)] plays a vital role both in the initiation and progression of BC. The E2-ERα mediated actions involve genomic signaling and non-genomic signaling. The specificity and magnitude of ERα signaling are mediated by interactions between ERα and several coregulator proteins called coactivators or corepressors. Alterations in the levels of coregulators are common during BC progression and they enhance ligand-dependent and ligand-independent ERα signaling which drives BC growth, progression, and endocrine therapy resistance. Many ERα coregulator proteins function as scaffolding proteins and some have intrinsic or associated enzymatic activities, thus the targeting of coregulators for blocking BC progression is a challenging task. Emerging data from in vitro and in vivo studies suggest that targeting coregulators to inhibit BC progression to therapy resistance is feasible. This review explores the current state of ERα coregulator signaling and the utility of targeting the ERα coregulator axis in treating advanced BC.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 868
Author(s):  
Florian Drescher ◽  
Patricia Juárez ◽  
Danna L. Arellano ◽  
Nicolás Serafín-Higuera ◽  
Felipe Olvera-Rodriguez ◽  
...  

Breast cancer (BCa) cells disseminating to the bone can remain dormant and resistant to treatments for many years until relapsing as bone metastases. The tyrosine kinase receptor TIE2 induces the dormancy of hematopoietic stem cells, and could also induce the dormancy of BCa cells. However, TIE2 is also a target for anti-angiogenic treatments in ongoing clinical trials, and its inhibition could then restart the proliferation of dormant BCa cells in bone. In this study, we used a combination of patient data, in vitro, and in vivo models to investigate the effect of TIE2 in the dormancy of bone metastases. In BCa patients, we found that a higher TIE2 expression is associated with an increased time to metastases and survival. In vitro, TIE2 decreased cell proliferation as it increased the expression of cyclin-dependent kinase inhibitors CDKN1A and CDKN1B and arrested cells in the G0/G1 phase. Expression of TIE2 also increased the resistance to the chemotherapeutic 5-Fluorouracil. In mice, TIE2 expression reduced tumor growth and the formation of osteolytic bone metastasis. Together, these results show that TIE2 is sufficient to induce dormancy in vitro and in vivo, and could be a useful prognostic marker for patients. Our data also suggest being cautious when using TIE2 inhibitors in the clinic, as they could awaken dormant disseminated tumor cells.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Hitisha K. Patel ◽  
Nianjun Tao ◽  
Kyung-Min Lee ◽  
Mariela Huerta ◽  
Heike Arlt ◽  
...  

Abstract Background Addition of CDK4/6 inhibitors (CDK4/6i) to endocrine therapy significantly increased progression-free survival, leading to their approval and incorporation into the metastatic breast cancer treatment paradigm. With these inhibitors being routinely used for patients with advanced estrogen receptor-positive (ER+) breast cancer, resistance to these agents and its impact on subsequent therapy needs to be understood. Considering the central role of ER in driving the growth of ER+ breast cancers, and thus endocrine agents being a mainstay in the treatment paradigm, the effects of prior CDK4/6i exposure on ER signaling and the relevance of ER-targeted therapy are important to investigate. The objective of this study was to evaluate the anti-tumor activity of elacestrant, a novel oral selective estrogen receptor degrader (SERD), in preclinical models of CDK4/6i resistance. Methods Elacestrant was evaluated as a single agent, and in combination with alpelisib or everolimus, in multiple in vitro models and patient-derived xenografts that represent acquired and “de novo” CDK4/6i resistance. Results Elacestrant demonstrated growth inhibition in cells resistant to all three approved CDK4/6i (palbociclib, abemaciclib, ribociclib) in both ESR1 wild-type and mutant backgrounds. Furthermore, we demonstrated that elacestrant, as a single agent and in combination, inhibited growth of patient-derived xenografts that have been derived from a patient previously treated with a CDK4/6i or exhibit de novo resistance to CDK4/6i. While the resistant lines demonstrate distinct alterations in cell cycle modulators, this did not affect elacestrant’s anti-tumor activity. In fact, we observe that elacestrant downregulates several key cell cycle players and halts cell cycle progression in vitro and in vivo. Conclusions We demonstrate that breast cancer tumor cells continue to rely on ER signaling to drive tumor growth despite exposure to CDK4/6i inhibitors. Importantly, elacestrant can inhibit this ER-dependent growth despite previously reported mechanisms of CDK4/6i resistance observed such as Rb loss, CDK6 overexpression, upregulated cyclinE1 and E2F1, among others. These data provide a scientific rationale for the evaluation of elacestrant in a post-CDK4/6i patient population. Additionally, elacestrant may also serve as an endocrine backbone for rational combinations to combat resistance.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2078
Author(s):  
Luca Gelsomino ◽  
Giuseppina Daniela Naimo ◽  
Rocco Malivindi ◽  
Giuseppina Augimeri ◽  
Salvatore Panza ◽  
...  

Aberrant leptin (Ob) signaling, a hallmark of obesity, has been recognized to influence breast cancer (BC) biology within the tumor microenvironment (TME). Here, we evaluated the impact of leptin receptor (ObR) knockdown in affecting BC phenotype and in mediating the interaction between tumor cells and macrophages, the most abundant immune cells within the TME. The stable knockdown of ObR (ObR sh) in ERα-positive and ERα-negative BC cells turned the tumor phenotype into a less aggressive one, as evidenced by in vitro and in vivo models. In xenograft tumors and in co-culture experiments between circulating monocytes and BC cells, the absence of ObR reduced the recruitment of macrophages, and also affected their cytokine mRNA expression profile. This was associated with a decreased expression and secretion of monocyte chemoattractant protein-1 in ObR sh clones. The loss of Ob/ObR signaling modulated the immunosuppressive TME, as shown by a reduced expression of programmed death ligand 1/programmed cell death protein 1/arginase 1. In addition, we observed increased phagocytic activity of macrophages compared to control Sh clones in the presence of ObR sh-derived conditioned medium. Our findings, addressing an innovative role of ObR in modulating immune TME, may open new avenues to improve BC patient health care.


Oncotarget ◽  
2017 ◽  
Vol 8 (17) ◽  
pp. 28840-28853 ◽  
Author(s):  
Mohadeseh Hasanpourghadi ◽  
Ashok Kumar Pandurangan ◽  
Chandrabose Karthikeyan ◽  
Piyush Trivedi ◽  
Mohd Rais Mustafa

2019 ◽  
Vol 18 ◽  
pp. 153473541984804 ◽  
Author(s):  
Paola Lasso ◽  
Mónica Llano Murcia ◽  
Tito Alejandro Sandoval ◽  
Claudia Urueña ◽  
Alfonso Barreto ◽  
...  

Background: The tumor cells responsible for metastasis are highly resistant to chemotherapy and have characteristics of stem cells, with a high capacity for self-regeneration and the use of detoxifying mechanisms that participate in drug resistance. In vivo models of highly resistant cells allow us to evaluate the real impact of the immune response in the control of cancer. Materials and Methods: A tumor population derived from the 4T1 breast cancer cell line that was stable in vitro and highly aggressive in vivo was obtained, characterized, and determined to exhibit cancer stem cell (CSC) phenotypes (CD44+, CD24+, ALDH+, Oct4+, Nanog+, Sox2+, and high self-renewal capacity). Orthotopic transplantation of these cells allowed us to evaluate their in vivo susceptibility to chemo and immune responses induced after vaccination. Results: The immune response induced after vaccination with tumor cells treated with doxorubicin decreased the formation of tumors and macrometastasis in this model, which allowed us to confirm the immune response relevance in the control of highly chemotherapy-resistant ALDH+ CSCs in an aggressive tumor model in immunocompetent animals. Conclusions: The antitumor immune response was the main element capable of controlling tumor progression as well as metastasis in a highly chemotherapy-resistant aggressive breast cancer model.


2013 ◽  
Vol 20 (5) ◽  
pp. 298-307 ◽  
Author(s):  
C Miceli ◽  
A Tejada ◽  
A Castaneda ◽  
S J Mistry

Sign in / Sign up

Export Citation Format

Share Document