Abstract A012: Mammary fat pad injections: An alternative implantation method for syngeneic tumor models

Author(s):  
Cynthia Obodozie ◽  
Susanne Ruf ◽  
Gojko Bijelic ◽  
Sandra Moor ◽  
Bianca Giesen ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1268
Author(s):  
Shengchao Zhang ◽  
Sibtain Ahmad ◽  
Yuxia Zhang ◽  
Guohua Hua ◽  
Jianming Yi

Enhanced plane of nutrition at pre-weaning stage can promote the development of mammary gland especially heifer calves. Although several genes are involved in this process, long intergenic non-coding RNAs (lincRNAs) are regarded as key regulators in the regulated network and are still largely unknown. We identified and characterized 534 putative lincRNAs based on the published RNA-seq data, including heifer calves in two groups: fed enhanced milk replacer (EH, 1.13 kg/day, including 28% crude protein, 25% fat) group and fed restricted milk replacer (R, 0.45 kg/day, including 20% crude protein, 20% fat) group. Sub-samples from the mammary parenchyma (PAR) and mammary fat pad (MFP) were harvested from heifer calves. According to the information of these lincRNAs’ quantitative trait loci (QTLs), the neighboring and co-expression genes were used to predict their function. By comparing EH vs R, 79 lincRNAs (61 upregulated, 18 downregulated) and 86 lincRNAs (54 upregulated, 32 downregulated) were differentially expressed in MFP and PAR, respectively. In MFP, some differentially expressed lincRNAs (DELs) are involved in lipid metabolism pathways, while, in PAR, among of DELs are involved in cell proliferation pathways. Taken together, this study explored the potential regulatory mechanism of lincRNAs in the mammary gland development of calves under different planes of nutrition.


2021 ◽  
Author(s):  
Mi Young Cha ◽  
Youn Kyung Houh ◽  
Yun Yeon Kim ◽  
Hyunuk Kim ◽  
Joo-Yeon Chung ◽  
...  

1985 ◽  
Vol 75 (1) ◽  
pp. 269-278 ◽  
Author(s):  
C.A. Carrington ◽  
H.L. Hosick

In order to determine: (1) whether there is a growth-regulating interaction between the mammary fat pad and mammary epithelium; (2) whether this interaction could be modified by dietary fats; and (3) whether these effects could be demonstrated in vitro, the following experiments were performed. Virgin Balb/c mice had the left inguinal mammary fat pad cleared of epithelium and were then maintained on one of four fully defined diets. These diets contained the following proportions of fat by weight: 5% or 10% mixed fats; 20% saturated fat plus cholesterol; or 20% polyunsaturated fat. To test for effects in vivo, animals received subcutaneous injections into the cleared fat pad of tumorigenic mammary cells (WAZ-2T(+SA) or WAZ-2T(-SA)) or preneoplastic mammary cells (CL-S1). Dietary fat had little effect on the latent period of tumour formation, but a low-fat diet increased the invasive/metastatic potential of both tumorigenic cell lines. A high-saturated-fat diet inhibited the growth of normal and preneoplastic epithelium in vivo. To test for effects in vitro, CL-S1 cells were co-cultured with explants of cleared mammary fat pad embedded within collagen gels. CL-S1 cells co-cultured with adipose explants obtained from mice fed on a diet containing 20% polyunsaturated fat showed a threefold increase in incorporation of [3H]thymidine into trichloroacetic acid-precipitable material. These results imply that dietary fats may affect the growth of mammary epithelium in two ways: the inhibition of growth caused by the high-saturated-fat diet may be due to systemic effects as it was not apparent in vitro; the increase in growth seen in vitro and caused by a high-polyunsaturated-fat diet is due to a direct interaction between the mammary fat pad and mammary epithelial cells. This interaction may be masked by systemic effects in vivo.


2019 ◽  
Vol 7 (6) ◽  
pp. 963-976 ◽  
Author(s):  
Huizhong Xiong ◽  
Stephanie Mittman ◽  
Ryan Rodriguez ◽  
Patricia Pacheco-Sanchez ◽  
Marina Moskalenko ◽  
...  

2006 ◽  
Vol 29 (3) ◽  
pp. 274-283 ◽  
Author(s):  
Meg L. Flanagan ◽  
Leslie A. Khawli ◽  
Peisheng Hu ◽  
Alan L. Epstein

2016 ◽  
Vol 69 ◽  
pp. S97
Author(s):  
M. Franklin ◽  
M. Thayer ◽  
D. Draper ◽  
D. Saims ◽  
S. Wise

Sign in / Sign up

Export Citation Format

Share Document