H60/TNT-3 Fusion Protein Activates NK Cells In Vitro and Improves Immunotherapeutic Outcome in Murine Syngeneic Tumor Models

2006 ◽  
Vol 29 (3) ◽  
pp. 274-283 ◽  
Author(s):  
Meg L. Flanagan ◽  
Leslie A. Khawli ◽  
Peisheng Hu ◽  
Alan L. Epstein
2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14556-e14556
Author(s):  
Stella Martomo ◽  
Dan Lu ◽  
Zhanna Polonskaya ◽  
Xenia Luna ◽  
Zhikai Zhang ◽  
...  

e14556 Background: KD033 is a clinical-stage bispecific fusion molecule consisting of a high-affinity anti-human-PD-L1 antibody and human IL-15. Preclinical studies have demonstrated that targeting IL-15 with anti-PD-L1 antibody resulted in increased efficacy, safety and maximal tolerated dose of the fusion protein compared to administration of free IL-15, as well as reduction of tumor growth in both PD-L1 positive and negative tumor models (1). The goal of the current study is to directly compare KD033 efficacy when PD-L1 is present or absent on the surface of the same tumor. Methods: KD033 was administered in the human-PD-L1/PD-1 transgenic C57/Bl6 mice subcutaneously transplanted with human-PD-L1 positive and negative MC38 colon carcinoma cells. This animal model allowed the evaluation of the impact of the presence or absence of human-PD-L1 expression on the tumor cell surface without altering human-PD-L1 expression on immune cells. Results: KD033 treatment resulted in significant tumor growth reduction in both human-PD-L1 positive and negative MC38 tumors. Analysis of peripheral immune cell populations showed similar increases of CD8 T and NK cells between human-PD-L1 positive and negative MC38- bearing mice after KD033 administration. Immunohistochemistry demonstrated a significant increase in CD8 T-cell infiltration into the human-PD-L1 positive MC38 tumors, whereas NK cells infiltration was more pronounced in the human-PD-L1 negative MC38 tumors. Analysis of tumor gene transcription after KD033 treatment highlighted differences in gene signatures between human-PD-L1 positive and negative MC38 tumors following KD033 treatment. Conclusions: These results showed that the efficacy of anti-PD-L1-IL-15 fusion protein is not limited to PD-L1 tumor expression as KD033 was efficacious in both PD-L1 positive and negative tumors. Mol Cancer Ther February 1 2021 (20) (2) 347-356; DOI: 10.1158/1535-7163.MCT-20-0457


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A198-A198
Author(s):  
Karrie Wong ◽  
Sharon Lin ◽  
Christopher Wrocklage ◽  
Katri Sofjan ◽  
Leila Williams ◽  
...  

BackgroundAdoptive cell therapy with ex vivo expanded tumor infiltrating lymphocytes (TIL) offers a potentially curative treatment for cancer. However, the immunosuppressive tumor microenvironment limits the effectiveness of TIL therapy. To address this medical need, we used our Immune-CRISPRomics® Platform to perform a series of genome-wide CRISPR/Cas9 screens to identify targets enhancing the ability of T cells to infiltrate and kill solid tumors in an in vivo setting. These screens identified SOCS1 as a top target that restrains T cell anti-tumor immunity. Based on these findings, we developed KSQ-001, an engineered TIL (eTIL) therapy created via CRISPR/Cas9-mediated editing of SOCS1 for the treatment of solid tumors.MethodsGenome-wide CRISPR/Cas9 screens were conducted in in vitro primary human T cells and TIL cultures and in in vivo primary mouse OT1 and PMEL-TCR-Tg T cells in syngeneic tumor models. The efficacy of surrogate murine KSQ-001 (mKSQ-001), in which the SOCS1 gene is inactivated by CRISPR/Cas9 in OT1 or PMEL-TCR-Tg T cells, was evaluated in both the B16-Ova and CRC-gp100 syngeneic tumor models, with memory formation and efficacy evaluated both in the presence and absence of cyclophosphamide-mediated lymphodepletion. KSQ-001 was manufactured from human TIL using SOCS1-targeting sgRNAs selected for therapeutic use based on potency and selectivity, with KSQ-001 characterized for in vitro function and in vivo anti-tumor efficacy.ResultsUpon adoptive transfer of a single dose into solid tumor-bearing hosts, mKSQ-001 was found to robustly enhance anti-tumor efficacy and eradicate tumors in 7/10 mice in the PD1-sensitive OT1/B16-Ova model and to drive responses in the PD-1 refractory PMEL/CRC-gp100 syngeneic tumor model. mKSQ-001 also showed a ten-fold increase in anti-tumor potency in vivo compared to unengineered T-cell product and established durable anti-tumor memory by persisting in the form of T central memory cells detectable at high frequency in the peripheral blood of complete responder mice. In the setting of lymphodepletion, mKSQ-001 also displayed heightened anti-tumor potency, accumulation, and memory formation in comparison to inactivation of PD-1. Importantly, human KSQ-001 displayed a transcriptional signature indicative of increased anti-tumor function, produced increased amounts of pro-inflammatory cytokines, exhibited a hypersensitivity to IL-12 signaling, and demonstrated increased anti-tumor function both in vitro and in vivo solid tumor models.ConclusionsBased on insights from our Immune-CRISPRomics® platform and demonstrated efficacy across multiple preclinical tumor models, we have developed KSQ-001, a novel eTIL therapy. These preclinical data support clinical testing of KSQ-001 in a variety of solid tumor indications.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1042-1042
Author(s):  
Chun-Yu Tung ◽  
Sharifah Kyazike ◽  
David Lewis ◽  
Ling Han ◽  
Alexander Kolb ◽  
...  

Abstract Introduction Immunostimulatory cytokines can enhance anti-tumor immunity and are part of the therapeutic armamentarium for cancer treatment. We have previously reported that chemotherapy-treated lymphoma patients have acquired deficiency of Signal Transducer and Activator of Transcription 4 (STAT4), which results in defective IFNg production during clinical immunotherapy. With the goal of further improvement in cytokine-based immunotherapy, we examined the effects of a soybean peptide called lunasin that exhibits immunostimulatory effects on natural killer (NK) cells. Experimental Design PBMCs of healthy donors and chemotherapy-treated lymphoma patients were stimulated with or without lunasin in the presence of IL-12 or IL-2. NK activation was evaluated, and its tumoricidal activity was assessed using in vitro and in vivo tumor models. Chromatin immunoprecipitation (ChIP) assay was performed to evaluate the histone modification of gene loci that are regulated by lunasin and cytokine. Results Adding lunasin to IL-12- or IL-2-cultuted NK cells demonstrated synergistic effects in the induction of IFNG and genes involved in cytotoxicity. The expression level of CD16 and granzyme B was increased in CD56-bright population of NK cells following stimulation with lunasin and cytokine. The combination of lunasin and cytokines (IL-12 plus IL-2) was capable of restoring IFNg production by NK cells from post-transplant lymphoma patients. In addition, NK cells stimulated with lunasin plus cytokines had higher tumoricidal activity than those stimulated with cytokines alone using in vitro and in vivo tumor models. Moreover, lunasin augmented antibody-dependent cellular cytotoxicity (ADCC) of NK cells against anti-CD20 coated human B-lymphoma cell line. The underlying mechanism responsible for the effects of lunasin on NK cells is likely due to epigenetic modulation on target gene loci. Conclusion We have discovered a novel use of lunasin that exerts synergistic effects together with IL-12 or IL-2. This synergism leads to stronger NK-mediated anti-tumor activity, suggesting the potential clinical use of lunasin to augment the therapeutic responses in cytokine-based immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 31-31
Author(s):  
Hisham Abdel-Azim ◽  
Yuhua Zhu ◽  
Roger Hollis ◽  
Xuili Wang ◽  
Qian-Lin Hao ◽  
...  

Abstract There are multiple applications for expansion of Hematopoietic Stem Cells (HSC) and progenitors in transplantation. Gene therapy for most hematopoietic diseases requires selective expansion of genetically corrected HSC to achieve therapeutic effects. Obtaining sufficient number of HSC (CD34+) is a limitation for use of cord blood (CB) in transplantation. Delayed immune recovery following HSC transplantation is associated with increased morbidity and mortality. Murine lymphoid recovery can be hastened by co-transplantation of Common Lymphoid Progenitors (CLP) with HSC, however, the rarity of human CLP in harvested products preclude their clinical use. We hypothesized that human HSC and CLP can be selectively and reversibly expanded by expression of a fusion protein comprised of the intracellular signaling domain of Thrombopoietin receptor (mpl), linked to a specific binding domain (F36V) for the chemical inducer of dimerization AP20187 (CID) (ARIAD Pharmaceuticals). Upon binding of CID to F36V, mpl signaling occurs. A lentiviral vector expressing the fusion protein (F36V-mpl) and a marker gene (GFP) was constructed and efficiently transduced and expressed in human CB HSC (CD34+CD38-CD7-) and CLP (CD34+CD38-CD7+). CID-induced mpl signaling in transduced human CLP maintained robust generation of total, B and NK cells for > 60 days, in cytokine free lymphoid cultures (N=4). Under these conditions transduced HSC cultures (N=4) maintained robust generation of total, B, NK cells for >120 day. Transduced HSC continued to generate clonogenic myelo-erythroid progenitors for > 120 days in ELTC-IC assay (N=4). These cytokine free in vitro assays indicate that CID-induced mpl signaling in human HSC and CLP induced prolonged survival and proliferation of transduced progenitors. Most of the cells generated in the presence of CID expressed GFP (mean 86% GFP+), indicating selective proliferation of transduced cells. Rapid decline in the number of cells expressing GFP was noticed upon withdrawal of CID, indicating reversible activation of mpl signaling in the transduced cells. In contrast, transduced human HSC and CLP cultured without CID, proliferated poorly and differentiated rapidly; viable cells were lost by day 22 of culture. To study whether cells stimulated by CID remained immunophenotypically and functionally primitive after dividing, cell divisions were tracked by labeling with the membrane dye PKH26. Proliferation index of transduced HSC was consistently higher in the presence of CID than in its absence. Human CD34+ cells that had undergone 3 divisions in the presence of CID and in absence of any cytokines, maintained a primitive CD34+ immunophenotype in vitro. In contrast, cells that divided in the absence of CID lost CD34 expression. Cells cultured ± CID were isolated after 3 divisions (based on PKH26 staining) and transplanted in equal numbers (40,000 cell/mouse) into sublethally ablated NOD/SCIDb2m −/− mice to assess function. Only CID-expanded cells were able to engraft, producing B lymphoid and myeloid progeny. Bone marrow harvested from the engrafted animals (N=3) contained clonogenic human myelo-erythroid progenitors (confirmed by Alu PCR of human specific CFU); cells cultured without CID failed to engraft. These studies show that CID-induced mpl signaling expands functionally primitive multipotent, engrafting human progenitors. This is a potential approach to selectively and reversibly expand transduced primitive human progenitors for use in cell therapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A750-A750
Author(s):  
Michael Schmidt ◽  
Gregory Papastoitsis ◽  
Howard Kaufman ◽  
Darrell Irvine ◽  
K Wittrup

BackgroundInterleukin-12 (IL-12) is a potent pro-inflammatory cytokine that promotes Th1 skewing, IFNγ expression, T- and NK-cell activation, and antigen presentation. In animal models, IL-12 can elicit robust anti-tumor responses through activation of both innate and adaptive immunity. However, clinical translation of IL-12 has been hindered by significant immune-related toxicity when delivered systemically, necessitating low doses that are often insufficient for efficacy. Intratumoral (IT) administration can expand the therapeutic window of IL-12 by increasing the local tumor concentration relative to systemic exposure but is in turn limited by rapid vascular and lymphatic clearance of injected drug from the tumor and corresponding systemic accumulation. Here we describe an approach to locally retain intratumorally administered IL-12 by complexing it to the common vaccine adjuvant aluminum hydroxide (alum) through a novel phosphopeptide linkage.MethodsSingle-chain murine IL-12 (mIL12) was genetically fused at its c-terminus to a short alum-binding peptide (ABP) that is specifically phosphorylated on multiple serines when co-expressed with the kinase Fam20C. Phosphorylated mIL12-ABP proteins were complexed with a 10x mass excess of aluminum hydroxide through a naturally occurring ligand exchange reaction between the phosphoserines in the ABP and surface hydroxyl groups on alum. mIL12-ABP/alum complexes were characterized for in vitro potency and in vivo efficacy in multiple syngeneic tumor models including MC38, CT26, A20, 4T1, and B16F10 following IT administration. Immune analyses and re-challenge experiments are in progress.Results mIL12-ABP is phosphorylated on multiple sites when co-expressed with Fam20C and is stably retained on aluminum hydroxide in vitro under elution conditions containing phosphate and serum. Alum-bound mIL12-ABP remains active in cellular assays with a 3–4 fold increase in EC50 compared to free protein. Following intratumoral administration, the mIL12-ABP/alum complexes have significantly extended tumor retention compared to unmodified mIL12, leading to potent local immune activation for >1 week. One or two doses of IT administered mIL12-ABP/alum is sufficient to induce robust monotherapy efficacy in diverse syngeneic tumor models including cold tumors resistant to checkpoint blockade and other immunotherapies. Locally administered mIL12-ABP/alum is further able to prime a systemic immune response leading to efficacy against non-injected tumors and spontaneous metastases. Doses required for optimal efficacy are well tolerated in mice with no significant weight loss or other evidence of systemic toxicity.ConclusionsAnkyra's platform is a differentiated approach to expand the therapeutic window of IL-12 and other cytokine drugs by enhancing tumor retention following IT administration.


2005 ◽  
Vol 113 (S 1) ◽  
Author(s):  
M Penna-Martinez ◽  
K Andric ◽  
RA Wahl ◽  
KH Usadel ◽  
PM Schumm-Draeger
Keyword(s):  
Nk Cells ◽  

2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen Sisakht ◽  
Amir Mahmoodzadeh ◽  
Mohammadsaeid Zahedi ◽  
Davood Rostamzadeh ◽  
Amin Moradi Hasan-Abad ◽  
...  

Background: Human papillomavirus (HPV) is the main biological agent causing sexually transmitted diseases (STDs), including precancerous lesions and several types of prevalent cancers. To date, numerous types of vaccines are designed to prevent high-risk HPV. However, their prophylactic effect is not the same and does not clear previous infections. Therefore, there is an urgent need for developing therapeutic vaccines that trigger cell-mediated immune responses for the treatment of HPV. The HPV16 E6 and E7 proteins are ideal targets for vaccine therapy against HPV. Fusion protein vaccines, which include both immunogenic interest protein and an adjuvant for augmenting the immunogenicity effects, are theoretically capable of guarantee the power of the immune system against HPV. Method: A vaccine construct, including HPV16 E6/E7 proteins along with a heat shock protein GP96 (E6/E7-NTGP96 construct), was designed using in silico methods. By the aid of the SWISS-MODEL server, the optimal 3D model of the designed vaccine was selected, followed by physicochemical and molecular parameters were performed using bioinformatics tools. Docking studies were done to evaluate the binding interaction of the vaccine. Allergenicity, immunogenicity, B, and T cell epitopes of the designed construct were predicted. Results: Immunological and structural computational results illustrated that our designed construct is potentially proper for stimulation of cellular and humoral immune responses against HPV. Conclusion: Computational studies showed that the E6/E7-NTGP96 construct is a promising candidate vaccine that needs further in vitro and in vivo evaluations.


2021 ◽  
Vol 8 (6) ◽  
pp. 110
Author(s):  
Nathalie Meijerink ◽  
Jean E. de Oliveira ◽  
Daphne A. van Haarlem ◽  
Guilherme Hosotani ◽  
David M. Lamot ◽  
...  

Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.


Sign in / Sign up

Export Citation Format

Share Document