Abstract 1307: Assessment of gene expression in peripheral blood from patients with advanced melanoma using RNA-seq before and after treatment with anti-PD-1 therapy with pembrolizumab (MK-3475)

Author(s):  
Mark D. Ayers ◽  
Michael Nebozhyn ◽  
Heather A. Hirsch ◽  
Razvan Cristescu ◽  
Erin E. Murphy ◽  
...  
Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2404-2404
Author(s):  
Shouguo Gao ◽  
Zhijie Wu ◽  
Carrie Diamond ◽  
Bradley Arnold ◽  
Valentina Giudice ◽  
...  

Abstract Introduction . T-cell large granular lymphocytosis (T-LGL) is a low grade lymphoproliferative disorder, often clinically manifest as bone marrow failure. Treatment with immunosuppressive therapies is effective, but the dominant clone may persist even in responding patients. The pathogenesis of T-LGL has not been fully elucidated. In this study, we performed single cell RNA sequencing (sc-RNA seq) and V(D)J profiling to discern clonotypes and gene expression patterns of T lymphocytes from T-LGL patients who were sampled before and after treatment. Methods. Blood was obtained from patients participating in a phase 2 protocol of alemtuzumab as second line therapy (NCT00345345; Dumitriu B et al, Lancet Haematol 2016). Leukapheresis was performed in 13 patients (M/F 7/6; median age 51 years, range 26-85) before and after 3-6 months alemtuzumab administration and in 7 age-matched healthy donors. Cryopreserved blood was enriched for T cells with the EasySep Human T cell Isolation Kit (Stem cell). sc-RNA seq was performed on the 10XGenomics Chromium Single Cell V(D)J + 5' Gene Expression platform, and sequencing obtained on the HiSeq3000 Platform. Barcode assignment, alignment, unique molecular index counting and T cell receptor sequence assembly were performed using Cell Ranger 2.1.1. Results. Four hundred fifty thousand cells from 13 patients and 107,000 cells from 7 healthy donors were profiled. We measured productive TCR chains (which fully span the V and J regions, with a recognizable start codon in the V region and lacking a stop codon in the V-J region, thus potentially generating a protein). We detected at least one productive TCR α-chain in 50%, one productive TCR β-chain in 69% and paired productive αβ-chains in 47% of all cells. There was loss of TCR repertoire diversity in patients which was quantified by Simpson's diversity index; most patients showed oligoclonal or, less frequently, monoclonal expansion of the TCR repertoire (Fig. A). Regardless of clinical response, alemtuzumab treatment did not correct the low TCR repertoire diversity. TCR repertoires can be classified as "public", when they express identical TCR sequences across multiple individuals, or "private", when each individual displays distinct TCR clonotypes. No TCRA or TCRB CDR3 homology among patients was observed: most TCR clonotypes appeared to be private. Our data suggests that T-LGL is etiologically heterogenous disease, consistent with T cell expansion in response to a variety antigens, in diverse HLA contexts, or randomly. Despite differences of TCR among patients and healthy donors, and the presence of large clones in patients, distribution of TCR diversity followed the power law distribution in healthy donors and patients (Fig. B, showing the negative linear relationship between logarithmic expression of clone frequency and clone size). The observed distribution is consistent with a somatic evolution model, in which cell fitness depends on cellular receptor response to specific antigens and stimulation of cells by cytokine and other signals from the environment; fitted clones have higher birth-death ratios and thus expand (Desponds J et al, PNAS 2016). CD4 and CD8 T cells can be virtually separated by imputation from their transcriptomes (Fig. C). Comparison of gene expression between patients and healthy donors showed dysregulation of genes involved in pathways related to the immune response and cell apoptosis, consistent with a pathophysiology of T cell clonal expansion. We used diffusion mapping, which localizes datapoints to their eigen components in low-dimesional space, to characterize sources contributing to the gene expression phenotype: the first component was mainly from T cell activation and the second was associated with TCR expression. In LGL the T cell transcriptome appeared to be shaped by both lineage development and TCR rearrangement. Conclusion. We describe at the single cell level T clonal expansion profiles in T-LGL, pre- and post-treatment. Single cell analysis allows accurate recovery of paired α and β chains in the same cell and demonstrates a continuum of cell lineage differentiation. We found a range of differences in transcriptome and TCR repertoires across patients. Transcriptome data, coupled with detailed TCR-based lineage information, provides a rich resource for understanding of the pathology of T-LGL and has implications for prognosis, treatment, and monitoring in the clinic. Figure. Figure. Disclosures Young: GlaxoSmithKline: Research Funding; CRADA with Novartis: Research Funding; National Institute of Health: Research Funding.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marta Alonso-Hearn ◽  
Maria Canive ◽  
Cristina Blanco-Vazquez ◽  
Rosana Torremocha ◽  
Ana Balseiro ◽  
...  

Abstract Paratuberculosis is chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Whole RNA-sequencing (RNA-Seq) is a promising source of novel biomarkers for early MAP infection and disease progression in cattle. Since the blood transcriptome is widely used as a source of biomarkers, we analyzed whether it recapitulates, at least in part, the transcriptome of the ileocecal valve (ICV), the primary site of MAP colonization. Total RNA was prepared from peripheral blood (PB) and ICV samples, and RNA-Seq was used to compare gene expression between animals with focal or diffuse histopathological lesions in gut tissues versus control animals with no detectable signs of infection. Our results demonstrated both shared, and PB and ICV-specific gene expression in response to a natural MAP infection. As expected, the number of differentially expressed (DE) genes was larger in the ICV than in the PB samples. Among the DE genes in the PB and ICV samples, there were some common genes irrespective of the type of lesion including the C-X-C motif chemokine ligand 8 (CXCL8/IL8), apolipoprotein L (APOLD1), and the interferon inducible protein 27 (IFI27). The biological processes (BP) enriched in the PB gene expression profiles from the cows with diffuse lesions included the killing of cells of other organism, defense response, immune response and the regulation of neutrophil chemotaxis. Two of these BP, the defense and immune response, were also enriched in the ICV from the cows with diffuse lesions. Metabolic analysis of the DE genes revealed that the N-glycan biosynthesis, bile secretion, one-carbon pool by folate and purine metabolism were significantly enriched in the ICV from the cows with focal lesions. In the ICV from cows with diffuse lesions; the valine, leucine and isoleucine degradation route, purine metabolism, vitamin digestion and absorption and the cholesterol routes were enriched. Some of the identified DE genes, BP and metabolic pathways will be studied further to develop novel diagnostic tools, vaccines and immunotherapeutics.


2013 ◽  
Vol 210 (1) ◽  
pp. 287-293 ◽  
Author(s):  
Yunjung Kim ◽  
Sara E. Trace ◽  
James J. Crowley ◽  
Kimberly A. Brownley ◽  
Robert M. Hamer ◽  
...  

2020 ◽  
Author(s):  
Ruo-Han Hao ◽  
Yan Guo ◽  
Jing Guo ◽  
Yu Rong ◽  
Shi Yao ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs) can be differentiated into adipocytes and osteoblasts. While the transcriptomic and epigenomic changes during adipogenesis and osteogenesis have been characterized, what happens to the chromatin loops is hardly known. Here we induced hMSCs to adipogenic and osteogenic differentiation, and performed 2 kb resolution Hi-C experiments for loop detection and generated RNA-seq, histone modification ChIP-seq and ATAC-seq data for integrative analysis before and after differentiation. We quantitatively identified differential contact loops and unique loops. After integrating with multi-omics data, we demonstrate that strengthened loops after differentiation are associated with gene expression activation. Specially, unique loops are linked with cell fate determination. We also proposed loop-mediated regulatory networks and identified IRS2 and RUNX2 as being activated by cell-specific loops to facilitate adipocytes and osteoblasts commitment, respectively. These results are expected to help better understand the long-range regulation in controlling hMSC differentiation, and provide novel targets for studying adipocytes and osteoblasts determination.


2020 ◽  
Author(s):  
Yajie JI ◽  
Xinyue ZHANG ◽  
Siyu LI ◽  
Shanyan SHA ◽  
Weili CHEN ◽  
...  

Abstract BackgroundMoxibustion is a Traditional Chinese Medicine (TCM) therapy that can prevent neutropenia after breast cancer (BC) chemotherapy. We aimed to explore the mechanism of moxibustion for treating BC chemotherapy-induced neutropenia (CIN).MethodsFifty patients with BC undergoing chemotherapy and who met the inclusion criteria were randomized into an intervention (IT) group and control (OC) group. After excluding cases, there were 14 cases in the RNA sequencing (RNA-seq) group and 17 cases in the verification group. Neutrophils were extracted from the peripheral blood of the patients in both groups before and after chemotherapy. RNA-seq and bioinformatics analysis were performed in RNA-seq group. The verification group were verified using real time quantity polymerase chain reaction (RT-qPCR).ResultsRNA-seq screened 1092 DEGs before and after chemotherapy in the OC group, and 571 DEGs in the IT group. Compared with the OC group, the IT group had 707 DEGs after chemotherapy. The effect of moxibustion on the patients’ neutrophil gene expression profiles was related to the cell adhesion, adaptive immune response and metabolic pathways, and leukocyte migration, etc. The co-network results showed that TSC22D1 and TGFB1I1 have core regulatory function. GO and KEGG enrichment pathway analysis suggested a close correlation with the TGFβ1/TSC22D1-mediated cell adhesion molecules (CAMs) pathway. RT-qPCR showed that CD177 in the neutrophils was significantly upregulated after chemotherapy compared with that before chemotherapy (P < 0.05) without moxibustion, while TSC22D1 showed a downward trend (P = 0.094). Moxibustion significantly increased the expression of TSC22D1, ANKFY1, and ITGB3 in the neutrophils (P < 0.05) after BC chemotherapy.ConclusionThe mechanism of moxibustion in improving CIN may be related to the regulation of the TSC22D1 expression profile in neutrophil. We present a novel insight into the mechanism of moxibustion treatment of CIN in patients with BC.Trial registrationChinese Clinical Trial Register, ChiCTR-INR-16009557. Registered 23 October 2016, http://www.chictr.org.cn/showproj.aspx?proj=16203.


Biomedicines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Hidemasa Bono ◽  
Kiichi Hirota

Hypoxia is the insufficiency of oxygen in the cell, and hypoxia-inducible factors (HIFs) are central regulators of oxygen homeostasis. In order to obtain functional insights into the hypoxic response in a data-driven way, we attempted a meta-analysis of the RNA-seq data from the hypoxic transcriptomes archived in public databases. In view of methodological variability of archived data in the databases, we first manually curated RNA-seq data from appropriate pairs of transcriptomes before and after hypoxic stress. These included 128 human and 52 murine transcriptome pairs. We classified the results of experiments for each gene into three categories: upregulated, downregulated, and unchanged. Hypoxic transcriptomes were then compared between humans and mice to identify common hypoxia-responsive genes. In addition, meta-analyzed hypoxic transcriptome data were integrated with public ChIP-seq data on the known human HIFs, HIF-1 and HIF-2, to provide insights into hypoxia-responsive pathways involving direct transcription factor binding. This study provides a useful resource for hypoxia research. It also demonstrates the potential of a meta-analysis approach to public gene expression databases for selecting candidate genes from gene expression profiles generated under various experimental conditions.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Leticia M. Spindola ◽  
Marcos L. Santoro ◽  
Pedro M. Pan ◽  
Vanessa K. Ota ◽  
Gabriela Xavier ◽  
...  

Abstract Background Psychiatric symptomatology during late childhood and early adolescence tends to persist later in life. In the present longitudinal study, we aimed to identify changes in genome-wide DNA methylation patterns that were associated with the emergence of psychopathology in youths from the Brazilian High-Risk Cohort (HRC) for psychiatric disorders. Moreover, for the differentially methylated genes, we verified whether differences in DNA methylation corresponded to differences in mRNA transcript levels by analyzing the gene expression levels in the blood and by correlating the variation of DNA methylation values with the variation of mRNA levels of the same individuals. Finally, we examined whether the variations in DNA methylation and mRNA levels were correlated with psychopathology measurements over time. Methods We selected 24 youths from the HRC who presented with an increase in dimensional psychopathology at a 3-year follow-up as measured by the Child Behavior Checklist (CBCL). The DNA methylation and gene expression data were compared in peripheral blood samples (n = 48) obtained from the 24 youths before and after developing psychopathology. We implemented a methodological framework to reduce the effect of chronological age on DNA methylation using an independent population of 140 youths and the effect of puberty using data from the literature. Results We identified 663 differentially methylated positions (DMPs) and 90 differentially methylated regions (DMRs) associated with the emergence of psychopathology. We observed that 15 DMPs were mapped to genes that were differentially expressed in the blood; among these, we found a correlation between the DNA methylation and mRNA levels of RB1CC1 and a correlation between the CBCL and mRNA levels of KMT2E. Of the DMRs, three genes were differentially expressed: ASCL2, which is involved in neurogenesis; HLA-E, which is mapped to the MHC loci; and RPS6KB1, the gene expression of which was correlated with an increase in the CBCL between the time points. Conclusions We observed that changes in DNA methylation and, consequently, in gene expression in the peripheral blood occurred concurrently with the emergence of dimensional psychopathology in youths. Therefore, epigenomic modulations might be involved in the regulation of an individual’s development of psychopathology.


2014 ◽  
Vol 221 (3) ◽  
pp. 429-440 ◽  
Author(s):  
Wenxia He ◽  
Xiangyan Dai ◽  
Xiaowen Chen ◽  
Jiangyan He ◽  
Zhan Yin

Sexual maturation and somatic growth cessation are associated with adolescent development, which is precisely controlled by interconnected neuroendocrine regulatory pathways in the endogenous endocrine system. The pituitary gland is one of the key regulators of the endocrine system. By analyzing the RNA sequencing (RNA-seq) transcriptome before and after sexual maturation, in this study, we characterized the global gene expression patterns in zebrafish pituitaries at 45 and 90 days post-fertilization (dpf). A total of 15 043 annotated genes were expressed in the pituitary tissue, 3072 of which were differentially expressed with a greater than or equal to twofold change between pituitaries at 45 and 90 dpf. In the pituitary transcriptome, the most abundant transcript was gh. The expression levels of gh remained high even after sexual maturation at 90 dpf. Among the eight major pituitary hormone genes, lhb was the only gene that exhibited a significant change in its expression levels between 45 and 90 dpf. Significant changes in the pituitary transcripts included genes involved in the regulation of immune responses, bone metabolism, and hormone secretion processes during the juvenile–sexual maturity transition. Real-time quantitative PCR analysis was carried out to verify the RNA-seq transcriptome results and demonstrated that the expression patterns of the eight major pituitary hormone genes did not exhibit a significant gender difference at 90 dpf. For the first time, we report the quantitative global gene expression patterns at the juvenile and sexual maturity stages. These expression patterns may account for the dynamic neuroendocrine regulation observed in body metabolism.


Sign in / Sign up

Export Citation Format

Share Document