Abstract 3226: Patient-derived xenograft (PDX) models for triple negative breast cancer (TNBC): A pre-clinical platform for drug discovery

Author(s):  
Jayant Thatte ◽  
Miguel Meza ◽  
Jill Ricono ◽  
Cyrus Mirsaidi ◽  
Thomas Broudy
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Reid T. Powell ◽  
Abena Redwood ◽  
Xuan Liu ◽  
Lei Guo ◽  
Shirong Cai ◽  
...  

Abstract Triple-negative breast cancer (TNBC) accounts for 15–20% of breast cancer cases in the United States, lacks targeted therapeutic options, and is associated with a 40–80% risk of recurrence. Thus, identifying actionable targets in treatment-naïve and chemoresistant TNBC is a critical unmet medical need. To address this need, we performed high-throughput drug viability screens on human tumor cells isolated from 16 patient-derived xenograft models of treatment-naïve primary TNBC. The models span a range of TNBC subtypes and exhibit a diverse set of putative driver mutations, thus providing a unique patient-derived, molecularly annotated pharmacologic resource that is reflective of TNBC. We identified therapeutically actionable targets including kinesin spindle protein (KSP). The KSP inhibitor targets the mitotic spindle through mechanisms independent of microtubule stability and showed efficacy in models that were resistant to microtubule inhibitors used as part of the current standard of care for TNBC. We also observed subtype selectivity of Prima-1Met, which showed higher levels of efficacy in the mesenchymal subtype. Coupling pharmacologic data with genomic and transcriptomic information, we showed that Prima-1Met activity was independent of its canonical target, mutant p53, and was better associated with glutathione metabolism, providing an alternate molecularly defined biomarker for this drug.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 259
Author(s):  
Madhuchhanda Kundu ◽  
Sumita Raha ◽  
Avik Roy ◽  
Kalipada Pahan

Although some therapies are available for regular breast cancers, there are very few options for triple-negative breast cancer (TNBC). Here, we demonstrated that serum level of IL-12p40 monomer (p40) was much higher in breast cancer patients than healthy controls. On the other hand, levels of IL-12, IL-23 and p40 homodimer (p402) were lower in serum of breast cancer patients as compared to healthy controls. Similarly, human TNBC cells produced greater level of p40 than p402. The level of p40 was also larger than p402 in serum of a patient-derived xenograft (PDX) mouse model. Accordingly, neutralization of p40 by p40 mAb induced death of human TNBC cells and tumor shrinkage in PDX mice. While investigating the mechanism, we found that neutralization of p40 led to upregulation of human CD4+IFNγ+ and CD8+IFNγ+ T cell populations, thereby increasing the level of human IFNγ and decreasing the level of human IL-10 in PDX mice. Finally, we demonstrated the infiltration of human cytotoxic T cells, switching of tumor-associated macrophage M2 (TAM2) to TAM1 and suppression of transforming growth factor β (TGFβ) in tumor tissues of p40 mAb-treated PDX mice. Our studies identify a possible new immunotherapy for TNBC in which p40 mAb inhibits tumor growth in PDX mice.


2020 ◽  
Author(s):  
Todd Pitts ◽  
Dennis M Simmons ◽  
Stacey M Bagby ◽  
Sarah J Hartman ◽  
Betelehem W Yacob ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) is an aggressive subtype defined by lack of hormone receptor expression and non-amplified HER2. Adavosertib (AZD1775) is a potent, small molecule, ATP-competitive inhibitor of the Wee1 kinase that potentiates the activity of many DNA-damaging chemotherapeutics and is currently in clinical development for multiple indications. The purpose of this study was to investigate the combination of AZD1775 and capecitabine/5-FU in preclinical TNBC models. Methods: TNBC cell lines were treated with AZD1775 and 5-FU and cellular proliferation was assessed in real-time using IncuCyte® Live Cell Analysis. Apoptosis was assessed via the Caspase-Glo 3/7 assay system. Western blotting was used to assess changes in expression of downstream effectors. TNBC PDX models were treated with AZD1775, capecitabine, or the combination and assessed for tumor growth inhibition. Results: From the initial PDX screen, two of the four TNBC PDX models demonstrated a better response in the combination treatment than either of the single agents. As confirmation, two PDX models were expanded for statistical comparison . Both PDX models demonstrated a significant growth inhibition in the combination versus either of the single agents. (TNBC012, p<0.05 combo vs adavosertib or capecitabine, TNBC013, p<0.01 combo vs adavosertib or capecitabine ). An enhanced antiproliferative effect was observed in the adavosertib/5-FU combination treatment as measured by live cell analysis. An increase in apoptosis was observed in two of the four cell lines in the combination when compared to single agent treatment. Treatment with single agent adavosertib resulted in an increase in p-CDC2 in a dose dependent manner that was also observed in the combination treatment. Similar results were observed with γH2AX in two of the four cell lines tested. No significant changes were observed in Bcl-xL following treatment in any of the cell lines. Conclusions: The combination of adavosertib and capecitabine/5-FU demonstrated enhanced combination effects both in vitro and in vivo in preclinical models of TNBC. These results support the clinical investigation of this combination in patients with TNBC, including those with brain metastasis given the CNS penetration of both agents.


Sign in / Sign up

Export Citation Format

Share Document