Abstract P3-01-16: Utilizing a decellularized patient-derived xenograft tumor model for the evaluation of triple negative breast cancer

Author(s):  
Maryl Wright ◽  
Margarite Matossian ◽  
Connor King ◽  
Khoa Nguyen ◽  
Steven Elliott ◽  
...  
2020 ◽  
Author(s):  
Jie Zhang ◽  
Lina Zhang ◽  
Jianlong Wang ◽  
Jing Zhao ◽  
Xuelian Zhao ◽  
...  

Abstract Background: Leucine zipper tumor suppressor 2 (LZTS2), an emerging tumor-suppressor, is attenuated in multiple cancers including prostate, lung and colon cancer. However, its expression and upstream regulatory mechanisms in triple negative breast cancer (TNBC) still remain unknown.Materials and methods: The expression of LZTS2 in TNBC and matched para-carcinoma tissues was detected with immunohistochemistry. The correlations between LZTS2 expression and clinicopathological parameters were analyzed. Kaplan-Meier analysis was performed to determine the prognostic role of LZTS2 for TNBC patients. CCK-8, wound healing and transwell assay were used to detect the effect of LZTS2 overexpression on the proliferation, migration and invasion ability, respectively. The bioinformation algorithms were used to reveal the potential upstream regulatory miRNA. Then, dual-luciferase reporter assay was performed to confirm the regulatory effect of the chosen miRNA on the expression of LZTS2. miR-9-5p inhibitor was used to determine the effect of miR-9-5p on the subcellular localization of β-catenin. Then, western blotting was performed to reveal the effect of miR-9-5p on EMT-related proteins in TNBC cells. Xenograft tumor model was established to reveal the effect of miR-9-5p on TNBC progression in vivo.Results: Low expression of LZTS2 was observed in 62 of 95 cases of TNBC tissue. Low expression of LZTS2 was correlated with poor postoperative DFS and OS of TNBC patients. LZTS2 could inhibit the proliferation, migration and invasion ability of TNBC cells. LZTS2 could be downregulated by miR-9-5p in TNBC, and the nuclear export of β-catenin was suppressed. Consequently, miR-9-5p inhibitor downregulated E-cadherin and upregulated N-cadherin, Twist and Vimentin in TNBC cells. Xenograft tumor model showed that miR-9-5p inhibitor could upregulate the expression of LZTS2 and induce nuclear export of β-catenin in TNBC.Conclusions: miR-9-5p contributes to β-catenin-activated EMT via downregulating LZTS2, and thus promotes TNBC progression.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Weiguang Liu ◽  
Jianjun Han ◽  
Sufang Shi ◽  
Yuna Dai ◽  
Jianchao He

Abstract Background Triple negative breast cancer (TNBC) is a breast cancer (BC) subtype that is characterized by its strong invasion and a high risk of metastasis. However, the specific mechanisms underlying these phenotypes are unclear. TUFT1 plays an important role in BC and impacts the proliferation and survival of BC cells. Recent studies have shown that TUFT1 mediates intracellular lysosome localization and vesicle transport by regulating Rab GTPase, but the relevance of this activity in TNBC is unknown. Therefore, our aim was to systematically study the role of TUFT1 in the metastasis and chemoresistance of TNBC. Methods We measured TUFT1, Rab5-GTP, and Rac1-GTP expression levels in samples of human TNBC by immunohistochemistry (IHC) and conducted univariate and multivariate analyses. shRNA-mediated knockdown and overexpression, combined with transwell assays, co-immunoprecipitation, a nude mouse xenograft tumor model, and GTP activity assays were used for further mechanistic studies. Results TUFT1 expression was positively correlated with Rab5-GTP and Rac1-GTP in the TNBC samples, and co-expression of TUFT1 and Rab5-GTP predicted poor prognosis in TNBC patients who were treated with chemotherapy. Mechanism studies showed that TUFT1 could activate Rab5 by binding to p85α, leading to activation of Rac1 through recruitment of Tiam1, and concurrent down-regulation of the NF-κB pathway and proapoptotic factors, ultimately promoting metastasis and chemoresistance in TNBC cells. Conclusions Our findings suggest that the TUFT1/Rab5/Rac1 pathway may be a potential target for the effective treatment of TNBC.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Reid T. Powell ◽  
Abena Redwood ◽  
Xuan Liu ◽  
Lei Guo ◽  
Shirong Cai ◽  
...  

Abstract Triple-negative breast cancer (TNBC) accounts for 15–20% of breast cancer cases in the United States, lacks targeted therapeutic options, and is associated with a 40–80% risk of recurrence. Thus, identifying actionable targets in treatment-naïve and chemoresistant TNBC is a critical unmet medical need. To address this need, we performed high-throughput drug viability screens on human tumor cells isolated from 16 patient-derived xenograft models of treatment-naïve primary TNBC. The models span a range of TNBC subtypes and exhibit a diverse set of putative driver mutations, thus providing a unique patient-derived, molecularly annotated pharmacologic resource that is reflective of TNBC. We identified therapeutically actionable targets including kinesin spindle protein (KSP). The KSP inhibitor targets the mitotic spindle through mechanisms independent of microtubule stability and showed efficacy in models that were resistant to microtubule inhibitors used as part of the current standard of care for TNBC. We also observed subtype selectivity of Prima-1Met, which showed higher levels of efficacy in the mesenchymal subtype. Coupling pharmacologic data with genomic and transcriptomic information, we showed that Prima-1Met activity was independent of its canonical target, mutant p53, and was better associated with glutathione metabolism, providing an alternate molecularly defined biomarker for this drug.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 259
Author(s):  
Madhuchhanda Kundu ◽  
Sumita Raha ◽  
Avik Roy ◽  
Kalipada Pahan

Although some therapies are available for regular breast cancers, there are very few options for triple-negative breast cancer (TNBC). Here, we demonstrated that serum level of IL-12p40 monomer (p40) was much higher in breast cancer patients than healthy controls. On the other hand, levels of IL-12, IL-23 and p40 homodimer (p402) were lower in serum of breast cancer patients as compared to healthy controls. Similarly, human TNBC cells produced greater level of p40 than p402. The level of p40 was also larger than p402 in serum of a patient-derived xenograft (PDX) mouse model. Accordingly, neutralization of p40 by p40 mAb induced death of human TNBC cells and tumor shrinkage in PDX mice. While investigating the mechanism, we found that neutralization of p40 led to upregulation of human CD4+IFNγ+ and CD8+IFNγ+ T cell populations, thereby increasing the level of human IFNγ and decreasing the level of human IL-10 in PDX mice. Finally, we demonstrated the infiltration of human cytotoxic T cells, switching of tumor-associated macrophage M2 (TAM2) to TAM1 and suppression of transforming growth factor β (TGFβ) in tumor tissues of p40 mAb-treated PDX mice. Our studies identify a possible new immunotherapy for TNBC in which p40 mAb inhibits tumor growth in PDX mice.


Sign in / Sign up

Export Citation Format

Share Document