scholarly journals Abstract 1876: Cell cycle-dependent front polarized cell migration requires Aurora kinase A

Author(s):  
Tony Lok Heng Chu ◽  
Lixin Zhou ◽  
Jennifer Won ◽  
Pooja Mohan ◽  
Oksana Nemirovsky ◽  
...  
2010 ◽  
Vol 16 (12) ◽  
pp. 3171-3181 ◽  
Author(s):  
Gong Yang ◽  
Bin Chang ◽  
Fan Yang ◽  
Xiaoqing Guo ◽  
Kathy Qi Cai ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1690-1690
Author(s):  
Leo Kretzner ◽  
Anna Scuto ◽  
Kowolik Claudia ◽  
Richard Jove ◽  
Stephen J Forman ◽  
...  

Abstract Abstract 1690 Poster Board I-716 Background Patients with relapsed or refractory Hodgkin (HL) and Non Hodgkin Lymphoma (NHL) have few options after salvage therapy and transplant, and new agents are thus needed. MK-5108 is a novel aurora kinase inhibitor (AKI) with specificity against aurora kinase A, that produces G2/M phase cell cycle arrest. We show that addition of vorinostat, a histone and protein deacetylase inhibitor, to AKI treatment results in reactivation of proapoptotic genes and enhanced lymphoma cell death. A panel of HL and NHL cell lines was studied with either drug or the combination, using cell growth, apoptosis, and flow cytometry assays, followed by molecular studies. Results MK-5108 alone at 0.1 – 3 mM results in significant growth inhibition and apoptosis in multiple cell lines representing Hodgkin, Burkitt, and Non-Hodgkin lymphoma types, interestingly,DHL-4 and DHL-6 cells were more sensitive to this agent than to the pan-AKI MK-0457. Vorinostat alone at a dose range of 0.5 – 3 mM reduces cell growth by 50% or more in all lines tested. The combination of 1.5 mM vorinostat and 100 nM MK-5108 results in over 85% apoptosis of multiple lymphoma lines tested at 72 hours. Cell cycle analyses by FACS of MK-5108 treated cells show an increased percentage of cells in G2/M with few cells in sub-G1, whereas in combination with vorinostat the G2/M peak decreases and there is a significant increase in the apoptotic sub-G1 population. Real-time PCR analysis and immunoblotting of L540 cells treated with either single agent or in combination revealed that vorinostat treatment leads to alteration in pro-apoptosis, growth arrest, and DNA damage response genes. Myc mRNA and protein levels are reduced by vorinostat, and repression of microRNAs (miRNAs) in the Myc-regulated polycistronic cluster of miRNAs of chromosome 13, such as miR-17.5p, -17.3p, and 18, occurs with vorinostat and TSA. Prosurvival genes such as bcl-XL and hTERT are downregulated five-fold by vorinostat treatment, while the proapoptotic BAK gene is upregulated 1.5 – 2-fold. Vorinostat treatment leads to enhanced acetylation of p53, with a corresponding increase in the p53 target genes p21 and Noxa. To analyze the role of Myc inhibition in the sensitization by vorinostat of lymphoma cells to MK-5108, siRNA-mediated knock-down of Myc expression in L540 cells was performed. The siRNA-Myc transfected L540 cells showed enhanced sensitivity to MK-5108 as compared to control siRNA-null cells, as well as decreased hTERT levels, confirming the role of Myc inhibition by vorinostat as an integral part of the sensitization of lymphoma cells to MK-5108. Conclusions The HDACi vorinostat leads to both transcriptional and post-transcriptional changes that create a pro-apoptotic milieu, sensitizing the cell to centrosome-acting agents such as the aurora kinase A inhibitor MK-5108. These preclinical data support clinical trials of MK-5108 plus vorinostat in patients with relapsed or refractory lymphomas. [We acknowledge Merck Inc for providing Vorinostat, MK-0457, MK-5108, and research support.] Disclosures Kretzner: Merck: Research Funding. Yen:Merck: Research Funding. Kirschbaum:Merck: Research Funding, Speakers Bureau.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1823-1823
Author(s):  
Arnold Bolomsky ◽  
Karin Schlangen ◽  
Artur Köhler ◽  
Goran Mitulovic ◽  
Wolfgang Schreiner ◽  
...  

Abstract Background: Despite significant progress in the treatment of multiple myeloma (MM) through the introduction of immunomodulatory drugs and proteasome inhibitors, therapeutic progress is limited for high-risk patients. Therefore, it is essential to define and validate novel drug targets in myeloma to implement personalized treatment options, predict drug activity and finally improve treatment outcome for all subgroups of MM patients. In the current study we aimed to analyse the prognostic value of maternal embryonic leucine zipper kinase (MELK) in MM and investigated the activity of a small molecule inhibitor of MELK (OTSSP167). Methods: MELK expression levels were analysed in two large cohorts of publically available gene expression (GEP) datasets (GSE2658 and GSE9782; n=551 and n=264, respectively) and 8 human myeloma cell lines (HMCLs). The utility of MELK as potential drug target in MM was investigated by using a selective small molecule inhibitor against MELK (OTSSP167). HMCLs were treated at varying concentrations (0-1000 nM) and analysed for viability, apoptosis and cell cycle status. Regulatory networks involved in the mechanisms of OTSSP167 were revealed by quantitative PCR (qPCR) and proteomic profiling of HMCLs after short-term (5 hours) treatment with OTSSP167 at 25-50 nM. Results: The prognostic impact of MELK was studied in two publically available GEP-datasets (GSE2658 and GSE9782). Interestingly, MELK expression was significantly elevated in the GEP-defined high-risk proliferation associated molecular subgroup (P<0.001). High levels of MELK expression were accordingly associated with poor prognosis. We observed significantly reduced overall survival in patients with high compared to low MELK levels treated within the total therapy 2 (P=0.0003), total therapy 3 (P=0.04) and the APEX trial protocol (P=0.002). These results pointed to a role for MELK as potential drug target in high-risk patients. To test this, we used a highly selective inhibitor of MELK (OTSSP167). In line with their proliferative character, MELK expression was detected in 8 of 8 HMCLs. Treatment with OTSSP167 led to a dose-dependent reduction of viability in all HMCLs tested (median IC50: 10.16 nM, range: 7.6 - 15.2 nM). Importantly, we also detected synergistic and additive drug activity of OTSSP167 in combination with pomalidomide and carfilzomib. OTSSP167 induced apoptosis in all HMCLs investigated, verified by annexin V/7-AAD staining, detection of cleaved PARP and mitochondrial membrane depolarization. The apoptotic effects might be attributed to a significant downregulation of IRF4 (up to 0.75±0.27 fold reduction, P=0.009) and MCL-1 (up to 0.51±0.09 fold reduction, P=0.002) expression. We also observed accumulation of MM cells in the G2 phase of the cell cycle (OPM-2: 24% vs 42%, MM.1S: 23% vs 38.8% of cells in G2 phase without or with OTSSP167 at 25 nM for 48 hours, P<0.001). This was associated with downregulation of central genes involved in the propagation of the cell cycle, including PLK-1, cyclin B1 and aurora kinase A (up to 0.82±0.08, 0.93±0.04 and 0.88±0.08 fold reduction, respectively; P<0.0001). We also detected downregulation of cyclin D1 (up to 0.41±0.3 fold reduction, P=0.03). These results were confirmed at the protein level by using proteomic profiling of three HMCLs after 5 hours of treatment with OTSSP167 at 50 nM. Again, we observed deregulation of proteins involved in the initiation of mitosis (cyclin B1, aurora kinase A, nucleolin). Of note, we also detected upregulation of several proteins involved in protein folding and stabilization (e.g. Csp, HSP90 alpha and HSP90 beta) as well as glycolysis (e.g. ENO1, ALDOA, G3P2, TPI1), suggesting that these factors might regulate potential drug resistance mechanisms. Conclusion: Our findings reveal MELK expression as a novel poor prognostic marker in newly diagnosed and relapsed MM, depicting a group of high-risk patients. Inhibition of MELK with OTSSP167 led to the induction of apoptosis and cell cycle arrest by targeting central genes of the MM signaling network (e.g. MCL-1, cyclin D1, aurora kinase A). Moreover, combination of OTSSP167 with established anti-MM drugs showed synergistic activity. These results emphasize to initiate further pre-clinical and clinical testing of MELK inhibition as a novel drug target in MM, especially for patients at high-risk. Disclosures Ludwig: Takeda: Research Funding; Celgene Corporation: Honoraria, Speakers Bureau; Onyx: Honoraria, Speakers Bureau; Bristol Myers Squibb: Honoraria, Speakers Bureau; Janssen Cilag: Honoraria, Speakers Bureau.


2016 ◽  
Vol 35 (6) ◽  
pp. 3696-3704 ◽  
Author(s):  
RUBICELI MEDINA-AGUILAR ◽  
LAURENCE A. MARCHAT ◽  
ELENA ARECHAGA OCAMPO ◽  
PATRICIO GARIGLIO ◽  
JAIME GARCÍA MENA ◽  
...  

Oncogene ◽  
2013 ◽  
Vol 33 (5) ◽  
pp. 539-549 ◽  
Author(s):  
T-V Do ◽  
F Xiao ◽  
L E Bickel ◽  
A J Klein-Szanto ◽  
H B Pathak ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3107-3107
Author(s):  
Alexander Hoellein ◽  
Stephanie Schoeffmann ◽  
Fallahi Mohammad ◽  
John L Cleveland ◽  
Johannes Gloeckner ◽  
...  

Abstract Myc oncoproteins (c-Myc, N-Myc and L-Myc) are transcription factors that regulate cell growth, cell division and metabolism under physiologic conditions. Myc overexpression is a hallmark of Burkitt lymphoma (BL) harboring MYC/IG translocations, and is frequently present in many advanced cancers. Myc overexpression is associated with aggressive disease, which is in part due to the destruction of select targets by the ubiquitin-proteasome system, for example Skp2SCF-directed destruction of the Cdk inhibitior p27Kip1 (Keller et al., EMBO 2007, Old et al., Mol. Canc. Res. 2010). We have identified a related means of post-translational protein modification, SUMOylation, as a pathway activated by Myc. Consequently, Myc-driven human BL and manifest Eµ-Myc mouse lymphomas are characterized by a hyperSUMOylation phenotype. Targeting SUMOylation in such lymphomas by a genetic approach results in growth inhibition and blocks lymphoma maintenance in vitro and in vivo. We further found that the SUMO pathway is in particular required for intact transitioning of the G2-M cell cycle checkpoint and through mitosis. The use of pharmacologic SUMOylation inhibitors (SUMOi) accordingly resulted in cell cycle arrest, polyploidy and cell death (Hoellein et al., Blood 2014). In this current report we aimed to identify crucial players of the Myc-SUMOylation axis by applying a mass spectrometry approach that used purified SUMOylated proteins in a conditional Myc-inducible B cell model. Stable isotope labeling permitted quantitative analysis of protein SUMOylation in the Myc-on versus Myc-off state. This screen identified Aurora kinase A as a Myc-regulated target of SUMOylation. Aurora kinases are essential regulators of mitosis and cytokinesis that are indispensable for Myc-driven transformed cells, and inhibition of Aurora kinase function results in similar effects as blocking SUMOylation, namely G2-M arrest, impaired cytokinesis resulting in polyploidy, and apoptosis (den Hollander et al., Blood 2010). We confirmed Myc-specific SUMO modification of Aurora kinase A and B and found reduced SUMOylation of both kinases upon treatment with pharmacologic SUMOylation inhibitors or shRNA targeting the key SUMOylation enzymes. Overexpression of Aurora kinase A and B mutants harboring a mutated SUMOylation motif resulted in a phenotype reminiscent of pharmacological SUMOi. This phenotype is independent of the Aurora kinase function since the SUMO motif mutation does not impair kinase activity. Moreover, in a comprehensive screen for specific E3-ligases that regulate the SUMO modification of the Aurora kinases we identified several SUMO E3 ligases that are also Myc induced. In summary, we propose a Myc-Aurora-kinase-SUMOylation circuit where Myc activation allows the induction of Aurora kinase transcription as well as the transcription of critical SUMOylation pathway genes. This mechanism contributes to sufficient Aurora kinase SUMOylation allowing faithful cell cycle passage and cytokinesis. In lymphoma and possibly other Myc-dependent cancers this pathway represents a target for synthetic lethal drug applications. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Author(s):  
Tony LH Chu ◽  
Jennifer Won ◽  
Oksana Nemirovsky ◽  
Abbas Fotovati ◽  
Torsten Nielsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document