scholarly journals Abstract 1968: A novel mechanism of metastasis: Extracellular ATP promotes invasion and metastasis independent of purinergic receptor signaling

Author(s):  
Yanyang Cao ◽  
Xuan Wang ◽  
Xiaozhuo Chen
2011 ◽  
Vol 300 (2) ◽  
pp. C266-C275 ◽  
Author(s):  
Taras Lyubchenko ◽  
Heather Woodward ◽  
Kristopher D. Veo ◽  
Nana Burns ◽  
Hala Nijmeh ◽  
...  

Extracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca2+ concentration ([Ca2+]i) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca2+ signaling and extracellular nucleotide-mediated mitogenic responses in VVEC. Our data indicate that stimulation of VVEC with extracellular ATP resulted in the elevation of [Ca2+]i via Ca2+ influx through plasma membrane channels as well as Ca2+ mobilization from intracellular stores. Moreover, extracellular ATP induced simultaneous Ca2+ responses in both cytosolic and nuclear compartments. An increase in [Ca2+]i was observed in response to a wide range of purinergic receptor agonists, including ATP, ADP, ATPγS, ADPβS, UTP, UDP, 2-methylthio-ATP (MeSATP), 2-methylthio-ADP (MeSADP), and BzATP, but not adenosine, AMP, diadenosine tetraphosphate, αβMeATP, and βγMeATP. Using RT-PCR, we identified mRNA for the P2Y1, P2Y2, P2Y4, P2Y13, P2Y14, P2X2, P2X5, P2X7, A1, A2b, and A3 purinergic receptors in VVEC. Preincubation of VVEC with the P2Y1 selective antagonist MRS2179 and the P2Y13 selective antagonist MRS2211, as well as with pertussis toxin, attenuated at varying degrees agonist-induced intracellular Ca2+ responses and activation of ERK1/2, Akt, and S6 ribosomal protein, indicating that P2Y1 and P2Y13 receptors play a major role in VVEC growth responses. Considering the broad physiological implications of purinergic signaling in the regulation of angiogenesis and vascular homeostasis, our findings suggest that P2Y1 and P2Y13 receptors may represent novel and specific targets for treatment of pathological vascular remodeling involving vasa vasorum expansion.


1997 ◽  
Vol 273 (2) ◽  
pp. C679-C686 ◽  
Author(s):  
S. C. Lee ◽  
P. A. Pappone

Sympathetic stimulation of brown adipocytes plays a major role in body energy homeostasis by activating energy-wasting pathways. Sympathetic neuronal input initiates a variety of metabolic, developmental, and membrane responses in brown fat cells. Many of these actions are mediated by adrenergic pathways mobilized by released norepinephrine. However, since sympathetic stimulation may also release vesicular ATP, we tested brown fat cells for ATP responses. Micromolar concentrations of extracellular ATP had a number of effects on brown adipocytes. We have shown previously that ATP elicits substantial (average of approximately 30%) increases in cell membrane capacitance (P. A. Pappone and S. C. Lee, J. Gen. Physiol. 108: 393-404, 1996). Here, we show that cytosolic calcium levels were increased by ATP, both through release from intracellular stores and through influx, as assessed by fura 2 imaging. In addition, ATP indirectly activated a nonselective cation conductance that was independent of cytosolic calcium levels in patch voltage-clamped brown fat cells. Similar calcium, conductance, and capacitance responses could be activated by 2-methylthio-ATP and ADP, consistent with mediation by a P2 type purinergic receptor. Calorimetric measurements from cell suspensions showed that ATP increased basal heat production of isolated brown fat cells by approximately 40% but had no effect on the greater than fivefold increase in heat production seen with maximal adrenergic stimulation. These myriad responses to extracellular ATP suggest that P2 receptor-mediated signaling is important in brown adipocyte physiology and that sympathetic stimulation may normally activate purinergic as well as adrenergic pathways in brown fat.


Blood ◽  
2005 ◽  
Vol 106 (12) ◽  
pp. 3860-3866 ◽  
Author(s):  
Frédéric Marteau ◽  
Nathalie Suarez Gonzalez ◽  
David Communi ◽  
Michel Goldman ◽  
Jean-Marie Boeynaems ◽  
...  

Extracellular adenosine triphosphate affects the maturation of human monocyte–derived dendritic cells (DCs), mainly by inhibiting T-helper 1 (Th1) cytokines, promoting Th2 cytokines, and modulating the expression of costimulatory molecules. In this study, we report that adenosine triphosphate (ATP) can induce immunosuppression through its action on DCs, defining a new role for extracellular nucleotides. Microarray analysis of ATP-stimulated human DCs revealed inter alia a drastic up-regulation of 2 genes encoding mediators involved in immunosuppression: thrombospondin-1 (TSP-1) and indoleamine 2,3-dioxygenase (IDO). The release of TSP-1 by DCs in response to ATP was confirmed at the protein level by enzyme-linked immunosorbent assay (ELISA), immunodetection, and mass spectrometry analysis, and has an antiproliferative effect on T CD4+ lymphocytes through TSP-1/CD47 interaction. Our pharmacologic data support the involvement of purinergic receptor P2Y11 in this ATP-mediated TSP-1 secretion. We demonstrate also that ATP significantly potentiates the up-regulation of IDO—a negative regulator of T lymphocyte proliferation—and kynurenine production initiated by interferon-γ (IFN-γ) in human DCs.Thus, extracellular ATP released from damaged cells and previously considered as a danger signal is also a potent regulator of mediators playing key roles in immune tolerance. Consequently, nucleotides' derivatives may be considered as useful tools for DC-based immunotherapies.


1995 ◽  
Vol 311 (1) ◽  
pp. 269-274 ◽  
Author(s):  
C Foresta ◽  
M Rossato ◽  
P Bordon ◽  
F Di Virgilio

1. The present study describes effects of extracellular ATP (ATPe) on plasma membrane potential and cytoplasmic Ca2+ concentrations ([Ca2+]i) in rat Sertoli cells. Sertoli cells in suspension were stimulated with ATPe and other nucleotides and ionic changes were monitored utilizing the fluorescent dyes bis-oxonol and fura-2/AM. ATPe induced a prompt plasma membrane depolarization which was dependent on Na+ influx from the extracellular medium, since it was abolished by omission of extracellular Na+. Depolarization was independent of [Ca2+]i rise as it also occurred in the absence of extracellular Ca2+ and after intracellular Ca2+ stores were discharged with thapsigargin. ATPe also stimulated a rapid and biphasic increase in [Ca2+]i: a prompt spike was followed by a prolonged sustained plateau. The initial spike was dependent on Ca2+ release from intracellular stores since it was also present when cells were incubated in EGTA-supplemented Ca(2+)-free medium and was abolished by pretreatment with ionomycin and thapsigargin, agents that discharge intracellular Ca2+ stores. The sustained phase was dependent on Ca2+ influx from the extracellular medium as it was abolished when cells were incubated in EGTA-supplemented Ca(2+)-free medium. Ca2+ influx was due to activation of voltage-operated calcium channels (VOCCs) since it was abolished by the VOCC inhibitors verapamil and nifedipine or incubation in sucrose medium, an experimental condition which precludes plasma membrane depolarization by ATPe. 2. ATPe-induced rises in intracellular Ca2+ concentration and plasma membrane depolarization were reduced by pretreatment with pertussis toxin, suggesting that ATPe-activated transduction mechanisms are in part under the control of pertussis toxin-sensitive G-proteins. These data show that Sertoli cells possess P2-purinergic receptor subtypes coupled to influx of Na+ and release of Ca2+ from intracellular stores and provide evidence for an activation of different pathways by extracellular ATPe. Activation of these receptors induces Na+ influx that causes a rapid plasma membrane depolarization. Furthermore, ATPe also triggers Ca2+ release from intracellular stores and Ca2+ influx from extracellular space via dihydropyridine-sensitive VOCCs.


2007 ◽  
Vol 14 (9) ◽  
pp. 1078-1083 ◽  
Author(s):  
Seng-Ryong Woo ◽  
Raúl G. Barletta ◽  
Charles J. Czuprynski

ABSTRACT Mycobacterium avium subsp. paratuberculosis is the etiologic agent of Johne's disease, a chronic granulomatous enteritis in ruminants. ATP has been reported to induce cell death of macrophages and killing of Mycobacterium species in human and murine macrophages. In this study we investigated the short-term effect of ATP on the viability of M. avium subsp. paratuberculosis-infected bovine mononuclear phagocytes and the bacilli within them. Addition of 5 mM ATP to M. avium subsp. paratuberculosis-infected bovine monocytes resulted in 50% cytotoxicity of bovine monocytes at 24 h. Addition of 2′(3′)-O-(4-benzoylbenzoyl) ATP triethylammonium salt (Bz-ATP), which is a longer-lived ATP homologue and purinergic receptor agonist, significantly increased the uptake of YO-PRO, which is a marker for membrane pore activation by P2X receptors. Addition of Bz-ATP also stimulated lactate dehydrogenase release and caspase-3 activity in infected bovine monocytes. Neither ATP nor Bz-ATP reduced the survival of M. avium subsp. paratuberculosis in bovine mononuclear phagocytes. Likewise, addition of ATP or Bz-ATP was cytotoxic to murine macrophage cell lines (RAW 264.7 and J774A.1 cells) but did not affect the intracellular survival of M. avium subsp. paratuberculosis, nor were the numbers of viable Mycobacterium avium subsp. avium or Mycobacterium bovis BCG cells altered in bovine mononuclear phagocytes or J774A.1 cells following ATP or Bz-ATP treatment. These data suggest that extracellular ATP does not induce the killing of intracellular M. avium subsp. paratuberculosis in bovine mononuclear phagocytes.


1989 ◽  
Vol 66 (2) ◽  
pp. 901-905 ◽  
Author(s):  
D. Warburton ◽  
S. Buckley ◽  
L. Cosico

Extracellular ATP is a potent agonist of surfactant phosphatidylcholine (PC) exocytosis from type II pneumocytes in culture. We studied P1 and P2 receptor signal transduction in type II pneumocytes. The EC50 for ATP on PC exocytosis was 10(-6) M, whereas the EC50 for ADP, AMP, adenosine, and the nonmetabolizable ATP analogue alpha,beta-methylene ATP was 10(-4) M. The rank order of agonists for PC exocytosis was ATP greater than ADP greater than AMP greater than adenosine greater than alpha,beta-methylene ATP. The rank order of agonists for phosphatidylinositol (PI) hydrolysis was ATP greater than ADP, whereas AMP, adenosine, and alpha,beta-methylene ATP did not stimulate PI hydrolysis. ATP (10(-4) M) caused a 15-fold increase in adenosine 3′,5′-cyclic monophosphate (cAMP) production, and the nonmetabolizable adenosine analogue 5′-N-ethylcarboxyamidoadenosine (10(-6) M) increased cAMP production threefold. The effects of both these agonists on cAMP production were completely inhibited by the adenosine antagonist 8-phenyltheophylline (10(-5) M). The effects of ATP (10(-4) M) on PC exocytosis were inhibited 38% by 10(-5) M 8-phenyltheophylline. Thus, ATP regulates PC exocytosis by activating P2 receptors, which stimulate PI hydrolysis to inositol phosphate, as well as by activating P1 receptors, which stimulate cAMP production. Interactions between the P1 and P2 pathways may explain the high potency of extracellular ATP as an agonist of PC exocytosis.


Sign in / Sign up

Export Citation Format

Share Document