Abstract 1886: Anti -GPRC5D/CD3 T cell-redirecting bispecific antibody with potent in vitro and in vivo antitumor efficacy against multiple myeloma

Author(s):  
Tatsushi Kodama ◽  
Yu Kochi ◽  
Waka Nakai ◽  
Hideaki Mizuno ◽  
Takeshi Baba ◽  
...  
Leukemia ◽  
2016 ◽  
Vol 31 (8) ◽  
pp. 1743-1751 ◽  
Author(s):  
S Hipp ◽  
Y-T Tai ◽  
D Blanset ◽  
P Deegen ◽  
J Wahl ◽  
...  

Abstract B-cell maturation antigen (BCMA) is a highly plasma cell-selective protein that is expressed on malignant plasma cells of multiple myeloma (MM) patients and therefore is an ideal target for T-cell redirecting therapies. We developed a bispecific T-cell engager (BiTE) targeting BCMA and CD3ɛ (BI 836909) and studied its therapeutic impacts on MM. BI 836909 induced selective lysis of BCMA-positive MM cells, activation of T cells, release of cytokines and T-cell proliferation; whereas BCMA-negative cells were not affected. Activity of BI 836909 was not influenced by the presence of bone marrow stromal cells, soluble BCMA or a proliferation-inducing ligand (APRIL). In ex vivo assays, BI 836909 induced potent autologous MM cell lysis in both, newly diagnosed and relapsed/refractory patient samples. In mouse xenograft studies, BI 836909 induced tumor cell depletion in a subcutaneous NCI-H929 xenograft model and prolonged survival in an orthotopic L-363 xenograft model. In a cynomolgus monkey study, administration of BI 836909 led to depletion of BCMA-positive plasma cells in the bone marrow. Taken together, these results show that BI 836909 is a highly potent and efficacious approach to selectively deplete BCMA-positive MM cells and represents a novel immunotherapeutic for the treatment of MM.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3493-3493
Author(s):  
Ahmad-Samer Samer Al-Homsi ◽  
Zhongbin Lai ◽  
Tara Sabrina Roy ◽  
Niholas Kouttab

Abstract Introduction Constitutive and immunoproteasome inhibitors (C&IPI) were thought to suppress nuclear factor-κB (NF-κB) pathway by preventing IκB degradation, which prevents NF-κB translocation into the nucleus. This mechanism of action has since been questioned by a number of studies. First, bortezomib promoted constitutive NF-κB activity in endothelial cell carcinoma. Second, NF-κB constitutive activity was resistant to bortezomib in multiple myeloma cell lines. Third, bortezomib increased IκB mRNA but post-transcriptionally downregulated IκB in normal cells and in multiple myeloma cell lines resulting in induced canonical NF-κB activation. Lastly, bortezomib increased nuclear levels of IκB as opposed to lowering cytoplasmic levels in cutaneous T cell lymphoma cell line suggesting that nuclear translocation of IκB was possibly responsible for NF-κB inhibition. The inhibitory activity of C&IPI on dendritic cells (DC) is of interest in the prevention of graft versus host disease (GvHD). It has been shown that different C&IPI impede DC maturation and T cell priming both in vitro and in vivo. Herein we sought to understand the mechanism of action of proteasome and immunoproteasome inhibitors on DC and to test their effect on IκB and NF-IκB expression. Materials and Methods We first performed RT PCR on lysates of DC obtained from the peripheral blood of 7 patients who received post-transplant cyclophosphamide and bortezomib as prevention of GvHD on a phase I clinical trial. Patients received allogeneic transplantation from matched-related or unrelated donors. Patients received no other immunosuppressive therapy except for rabbit anti-thymocyte globulin for those receiving graft from unrelated donor. Steroids were not allowed on the study. Samples were obtained on days +1, +4, and +7. The results were analyzed in comparison to samples obtained on day 0 before stem cell infusion. We then performed the same experiment on lysates of DC obtained from the peripheral blood of healthy volunteer donors. DC were untreated or incubated with bortezomib (10 nM for 4 h), carfilzomib (30 nM for 1 h), oprozomib (100 nM and 300 nM for 4 h), ONX 0914 (200 nM for 1 h), PR-825 (125 nM for 1 h), or PR-924 (1000 nM for 1 h). The drug concentration and duration of exposure were chosen based on the IC50 on proteasome activity and to reproduce in vivo conditions. We also performed IκB western blot on DC isolated from peripheral blood of healthy volunteers, untreated or incubated with bortezomib (10 nM for 4 h) or oprozomib (300 nM for 4 h). Each experiment was performed at least in triplicate. Results We found that the combination of cyclophosphamide and bortezomib significantly and progressively increased IκB mRNA while decreasing NF-κB mRNA in DC studied ex vivo. We also found that all studied C&IPI increased IκB mRNA to a variable degree while only oprozomib (300 nM) decreased NF-κB mRNA in DC in vitro. Finally, both bortezomib and oprozomib increased IκB protein level in DC in vitro (figure). Conclusion Our data suggest that C&IPI increase IκB expression in DC. As opposed to the previously reported data in other cell types, the effect is not associated with post-transcriptional downregulation. Cyclophosphamide and bortezomib also decrease NF-κB expression in DC in vivo while only oprozomib had the same effect in vitro. The effect of C&IPI on IκB and NF-κB expression may represent a new mechanism of action and suggests their effect may be cell-type dependent. Disclosures: Al-Homsi: Millennium Pharmaceuticals: Research Funding. Off Label Use: The use of cyclophosphamide and bortezomib for GvHD prevention. Lai:Millennium Pharmaceuticals: Research Funding.


2015 ◽  
Vol 51 ◽  
pp. S13 ◽  
Author(s):  
Marina Bacac ◽  
Tanja Fauti ◽  
Sara Colombetti ◽  
Johannes Sam ◽  
Valeria Nicolini ◽  
...  

Author(s):  
Takayoshi Yamauchi ◽  
Toshifumi Hoki ◽  
Takaaki Oba ◽  
Kristopher Attwood ◽  
Xuefang Cao ◽  
...  

AbstractThe use of tumor mutation-derived neoantigen represents a promising approach for cancer vaccines. Preclinical and early-phase human clinical studies have shown the successful induction of tumor neoepitope-directed responses; however, overall clinical efficacy of neoantigen vaccines has been limited. One major obstacle of this strategy is the prevailing lack of sufficient understanding of the mechanism underlying the generation of neoantigen-specific CD8+ T cells. Here, we report a correlation between antitumor efficacy of neoantigen/toll-like receptor 3 (TLR3)/CD40 vaccination and the generation of antigen-specific CD8+ T cells expressing CX3C chemokine receptor 1 (CX3CR1) in a preclinical model. Mechanistic studies using mixed bone marrow chimeras identified that CD40 and CD80/86, but not CD70 signaling in Batf3-dependent conventional type 1 dendritic cells (cDC1s) is required for antitumor efficacy of neoantigen vaccine and generation of neoantigen-specific CX3CR1+ CD8+ T cells. Although CX3CR1+ CD8+ T cells exhibited robust in vitro effector function, depletion of this subset did not alter the antitumor efficacy of neoantigen/TLR3/CD40 agonists vaccination, suggesting that the expanded CX3CR1+ CD8+ T cell subset represents the post-differentiated in vivo effective CX3CR1-negative CD8+ T cell subset. Taken together, our results reveal a critical role of CD40 and CD80/86 signaling in cDC1s in antitumor efficacy of neoantigen-based therapeutic vaccines, and implicate the potential utility of CX3CR1 as a circulating predictive T-cell biomarker in vaccine therapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 341-341
Author(s):  
Lucila Kerbauy ◽  
Mecit Kaplan ◽  
Pinaki P Banerjee ◽  
Francesca Lorraine Wei Inng Lim ◽  
Ana Karen Nunes Cortes ◽  
...  

Abstract Chimeric antigen receptors to redirect T cell specificity against tumor antigens have shown remarkable clinical responses against CD19+ malignancies. However, the manufacture of an engineered autologous T cell product is expensive and cumbersome. Natural killer (NK) cells provide an alternative source of immune effectors for the treatment of cancer. NK cell cytolytic function can be directed towards specific targets by exploiting their ability to mediate antibody-dependent cellular cytotoxicity (ADCC) through the NK cell Fc receptor, CD16 (FcγRIIIa). AFM13 is a tetravalent bispecific antibody construct based on Affimed's ROCK™ platform. AFM13 is bispecific for CD30 and CD16A, designed for the treatment of CD30 expressing malignancies. It binds CD16A on the surface of NK cells, thus activating and recruiting them to CD30 expressing tumor cells and mediating subsequent tumor cell killing. Since autologous NK effector function is impaired in many patients with malignancies, we propose to overcome this by the use of allogeneic NK cells in combination with AFM13. Cord blood (CB) is a readily available ("off-the-shelf") source of allogeneic NK cells that can be expanded to large, highly functional therapeutic doses. The feasibility and safety of therapy with allogeneic ex vivo expanded CB-derived NK cells have been shown by our group and others. In this study, we hypothesized that we can redirect the specificity of NK cells against CD30+ malignancies by preloading ex vivo activated and expanded CB-derived NK cells with AFM13 prior to adoptive infusion. Briefly, mononuclear cells were isolated from fresh or frozen CB units by ficoll density gradient centrifugation. CD56+ NK cells were cultured with rhIL-12, rhIL-18 and rhIL-15 for 16 hrs, followed by ex vivo expansion with rhIL-2 and irradiated (100 Gy) K562-based feeder cells expressing membrane-bound IL-21 and CD137-ligand (2:1 feeder cell:NK ratio). After 14 days, NK cells were loaded with serial dilutions of AFM13 (0.1, 1, 10 and 100 mg/ml). After washing twice with PBS, we tested the effector function of AFM13-loaded NK-cells (AFM13-NK) compared to expanded CB-NK cells without AFM13 against Karpas-299 (CD30 positive) and Daudi (CD30 negative) lymphoma cell lines by 51Cr release and intracellular cytokine production assays. AFM13-NK cells killed Karpas-299 cells more effectively at all effector:target ratios tested than unloaded NK cells (Figure 1) and produced statistically more INFγ and CD107a (P=0.0034; P=0.0031 respectively, n=4). In contrast, AFM13-NK cells and unloaded NK cells exerted similar cytotoxicity against Daudi cells. Next, we established the optimal concentration of AFM13 for loading (determined to be 100 μg/ml) and the optimal incubation time to obtain maximal activity (1 h) in a series of in vitro experiments. We also confirmed that the activity of AFM13-NK cells against Karpas-299 cells remains stable for at least 72h post-wash (Figure 2). Additionally, we characterized the phenotype of AFM13-NK vs. unloaded NK cells by flow cytometry using monoclonal antibodies against 22 markers, including markers of activation, inhibitory receptors, exhaustion markers and transcription factors. Compared to unloaded NK cells, AFM13-NK cells expressed higher levels of CD25, CD69, TRAIL, NKp44, granzyme B and CD57, consistent with an activated phenotype. We next tested the in vivo anti-tumor efficacy of AFM13-NK cells in an immunodeficient mouse model of FFluc-Karpas-299. Briefly, six groups of NOD/SCID/IL2Rγc null mice (n=5 per group) were transplanted by tail-vein injection with 1 x 10e5 FFluc-transduced Karpas cells. Group 1 and 6 received tumor alone or tumor + AFM13 and served as a control. Groups 2-4 receive Karpas FFLuc with either expanded NK cells or AFM13-NK cells (NK cells loaded with AFM13) or expanded NK cells and AFM13 injected separately. Group 5 received AFM13-NK cells without tumor. Initial studies confirm the antitumor activity of AFM13-NK cells. In summary, we have developed a novel premixed product, comprised of expanded CB-NK cells loaded with AFM13 to 'redirect' their specificity against CD30+ malignancies. The encouraging in vitro and in vivo data observed in this study, provide a strong rationale for a clinical trial to test the strategy of an off-the-shelf adoptive immunotherapy with AFM13-loaded CB-NK cells in patients with relapsed/refractory CD30+ malignancies. Disclosures Champlin: Sanofi: Research Funding; Otsuka: Research Funding. Koch:Affimed GmbH: Employment. Treder:Affimed GmbH: Employment. Shpall:Affirmed GmbH: Research Funding. Rezvani:Affirmed GmbH: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 962-962 ◽  
Author(s):  
Ksenia Bezverbnaya ◽  
Vivian Lau ◽  
Craig Aarts ◽  
Galina Denisova ◽  
Arya Afsahi ◽  
...  

Abstract Despite recent therapeutic developments, multiple myeloma remains an incurable plasma cell malignancy. Poor prognosis for myeloma patients relapsing post-transplant calls for the need for novel treatment options. Immunotherapy with engineered T cells has proven highly efficacious against B-cell cancers, and early-phase clinical trials suggest that multiple myeloma is susceptible to this form of therapy. We designed a new chimeric T cell receptor, T cell antigen coupler (TAC), which relies upon activation through endogenous T cell receptor complex, thus allowing engineered T cells to auto-regulate their activity (Helsen et al, Nat. Comm., 2018). Using published single-chain antibody fragments (scFvs) C11D5.3 and J22.9-xi, we generated B cell maturation antigen (BCMA)-specific TAC receptors for targeting multiple myeloma. Primary human T cells were transduced with lentiviral vectors carrying different BCMA TAC constructs and assessed for in vitro functionality via cytokine production, cytotoxicity, and proliferation assays. In vivo efficacy and T cell tracking were performed in an established orthotopic xenograft mouse model based on a BCMA-positive KMS-11 cell line. C11D5.3 and J22.9-xi TAC T cells demonstrated comparable in vitro performance with both types of cultures efficiently killing BCMA-expressing targets, producing IFN-γ, TNF-α, and IL-2 cytokines, and undergoing multiple rounds of proliferation. In vivo, TAC T cells carrying either scFv were capable of curing mice bearing disseminated myeloma; however, the TAC T cells carrying J22.9-xi scFv were more potent on a per-cell basis (Figure 1A, top panel). Mice in remission 3 months post-treatment with a single dose of 106 TAC-positive T cells showed evidence of sustained anti-tumor protection upon rechallenge with a fresh dose of 106 KMS-11 tumor cells (Figure 1B). Mice treated with low-dose J22.9-xi T cells were more resistant to rechallenge than mice treated with a comparable dose of C11D5.3 TAC T cells. Tracking of the TAC T cells in vivo revealed that the J22.9-xi TAC T cells expanded to a much larger extent than the C11D5.3 TAC T cells (Figure 1A, bottom panel), indicating that there were likely more J22.9-xi TAC T cells present at the time of tumor rechallenge. To understand whether biological aspects of BCMA may influence the proliferative response of the TAC T cells, we explored the influence of APRIL, the soluble ligand for BCMA, on TAC T cell proliferation in vitro. Strikingly, despite comparable proliferation of both TAC T cell populations following stimulation with KMS-11 tumor cells in the absence of APRIL in vitro, the presence of APRIL had a strong inhibitory effect on proliferation of C11D5.3 TAC T cells and only a modest inhibitory effect on J22.9-xi TAC T cells. Our preclinical findings support further development of TAC T cells for the treatment of multiple myeloma and underscore the importance of T cell expansion in determining the therapeutic activity of engineered T cells. This work further reveals a novel observation that the natural ligand of BCMA can impair the therapeutic impact of T cells engineered with chimeric receptors directed against BCMA and provide a basis for advancing BCMA-specific TAC T cells into the clinic. Disclosures Denisova: Triumvira Immunologics: Patents & Royalties. Afsahi:Triumvira Immunologics: Patents & Royalties. Helsen:Triumvira Immunologics: Employment, Patents & Royalties. Bramson:Triumvira Immunologics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maria Geis ◽  
Boris Nowotny ◽  
Marc-Dominic Bohn ◽  
Dina Kouhestani ◽  
Hermann Einsele ◽  
...  

AbstractBispecific T cell engaging antibodies (BiTEs) address tumor associated antigens that are over-expressed on cancer but that can also be found on healthy tissues, causing substantial on-target/off-tumor toxicities. To overcome this hurdle, we recently introduced hemibodies, a pair of complementary antibody fragments that redirect T cells against cancer-defining antigen combinations. Here we show that hemibodies addressing CD38 and SLAMF7 recruit T cells for the exquisite elimination of dual antigen positive multiple myeloma cells while leaving single antigen positive bystanders unharmed. Moreover, CD38 and SLAMF7 targeting BiTEs, but not hemibodies induce massive cytokine release and T cell fratricide reactions, a major drawback of T cell recruiting strategies. Together, we provide evidence in vitro and in vivo that hemibodies can be developed for the effective and highly specific immunotherapy of multiple myeloma.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4489-4489
Author(s):  
Cirino Botta ◽  
Marco Rossi ◽  
Maria Rita Pitari ◽  
Annamaria Gullà ◽  
Teresa Del Giudice ◽  
...  

Dendritic cells (DCs) are potent antigen presenting cells that regulate the development of both innate and adaptive immune responses. According to their maturation status, DCs may ignite immune response or induce immune tolerance. Indeed, immature DCs (iDCs) present low levels of costimulatory molecules such as CD80 and CD86, and high levels of tolerogenic molecules such as B7H3. Upon exposure to maturation stimuli, DCs upregulate CD83 on their surface and gain the competence of stimulating T cell response. An efficient maturation is crucial for the generation of a specific cytotoxic T lymphocyte response, specially against cancer. However, recent reports have shown that Multiple Myeloma (MM) milieu can recruit DCs and reprogram them to sustain growth and survival of MM cells and protect them against immune response. Therapeutic approaches to restore DC functions rely on the identification of the pathways that are directly involved in induction of tolerance. Emerging evidence supports the role of microRNAs (miRNA) in the regulation of immune response and DC function. Among others, the miR-29 family seems to be involved in the modulation of NK activity, of Th1/Th2 phenotype switch and of DC differentiation from monocyte precursors. Besides, miR-29b targets and inhibits different and crucial immune-modulatory molecules such as B7H3, VEGF and IL-4. These findings suggest that miR-29 may play an important role in the multifaceted interplay between tumor cells and host’s immune system. To address this hypothesis, we generated iDCs from CD14+ monocytes of healthy donors and co-cultured them with: i) allogeneic (allo-) lymphocytes; ii) VEGF and IL-6 producing MM cells (RPMI8226 and U266); iii) allo-lymphocyte and MM cells. We found a consistent increase of miR-29b expression by RT-PCR during differentiation and maturation of DCs induced by allo-lymphocytes. However, when immature DCs were co-cultured with MM cells +/- allo-lymphocytes, a significant 3-fold reduction of miR-29b levels (p= 0.02) was observed (fig 1). This event occurred together with the absence of maturation markers, the persistence of high levels of B7H3 on the cell surface and with a raise in VEGF, IL-10, and IFN-gamma levels in the supernatant, confirming the MM-dependent impairment of the physiological DC maturation process. This latter concept was supported by the finding of increased number of CD4+CD25+Foxp3+T-regs in the DC/MM cell/allo-lymphocyte co-cultures as compared to the DC/allo-lymphocyte co-cultures (p= 0.05). To promote the recovery from the MM related immune-bias, we transiently transfected iDCs with miR-29b (29b-DCs) mimics or with a negative control (NC-DCs). We observed improved DC maturation (82.46% versus 39.89% of CD11c+/CD83+/CD86+ cells), reduced expression of B7H3 (33% reduction in MFI) and reduction of the T-reg number in 29b-DC/MM cell/allo-lymphocyte co-cultures as compared to NC-DC/MM cell/allo-lymphocyte co-culture. To investigate whether 29b-DCs were able to promote a specific CTL response against MM cells in vivo, we engrafted NOD/SCID γ chain-null mice with peripheral blood mononuclear cells (PBMCs) from HLA-A2+ healthy donors. DCs from the same donor were differentiated, transfected with either miR-29b or NC and then co-cultured with U266 for 48h. Mice were then vaccinated twice with either 29b-DCs or NC-DCs. Two weeks following the first injection, CD3+ human lymphocytes were recovered from mouse spleens (CD3 hu-splenocytes). We found an increased CD8/CD4 ratio in the CD3 hu-splenocytes collected from the 29b-DCs treated mouse as compared to control. To assess the capability of CD3+ hu-splenocytes to selectively kill U266 cells, we kept CD3 lymphocytes in culture in the presence of IL-15 for 48h. Then, we carried a cytotoxicity assay against U266 cell target. The highest specific lysis was attained with miR-29b DC primed CD3 hu-splenocytes (fig.2, p=0.03). Taken together, our data indicate that: a) miR-29b regulates DC differentiation/maturation and function; b) MM cells reduce the expression of miR-29b in DCs, thus contributing to the establishment of an immune-permissive microenvironment; c) replacement of miR-29b within DCs partially restores their differentiation and functions in vitro and their capability to induce antitumor specific T-cell response in vivo. On these findings, miR-29b mimics are attractive candidates to enhance immunotherapy approaches against MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2127-2127 ◽  
Author(s):  
David L. Hermanson ◽  
Burton Earle Barnett ◽  
Srinivas Rengarajan ◽  
Rebecca Codde ◽  
Xinxin Wang ◽  
...  

Abstract Chimeric-antigen receptor (CAR)-T cell immunotherapies have been remarkably effective in treating acute lymphoblastic leukemia. However, current strategies generally suffer from difficult, inefficient and costly manufacturing processes, significant patient side effects and poor durability of response in some patients. Here, we report for the first time a CAR-T cell therapeutic comprising a non-immunoglobulin alternative scaffold Centyrin molecule (a "CARTyrin") manufactured with a novel non-viral piggyBacTM (PB) transposon-based system. Our lead candidate, P-BCMA-101, encodes a CARTyrin that targets the B cell maturation antigen (BCMA) for the treatment of multiple myeloma (MM) and has several unique aspects that improve upon earlier CAR-T products. First, P-BCMA-101 is manufactured using only in vitro transcribed mRNA and plasmid DNA without the need for lentivirus or g-retrovirus, resulting in time and cost savings. Importantly, PB is also safer than viral systems due to a less mutagenic insertional profile and is non-oncogenic. Furthermore, PB can efficiently deliver transgenes as large as several hundred kilobases, and, once inserted, transgenes demonstrate more stable, prolonged and higher expression when compared to those delivered by virus. Second, a mutein of the dihydrofolate reductase (DHFR) gene is included in the P-BCMA-101 transgene that can be used in combination with the non-genotoxic drug methotrexate (MTX) to provide a simple and effective method of CARTyrin+ cell enrichment and reduces variability in patient product material. Third, P-BCMA-101 incorporates a safety switch for optional depletion in vivo in case of adverse events. Lastly, the CARTyrin is comprised of a BCMA-specific Centyrin, which are based on a human tenascin fibronectin type III (FN3) consensus sequence. Centyrins have similar binding affinities to the antibody-derived single chain variable fragments (scFv), but are smaller, more thermostable and predicted to be less immunogenic. Importantly, no signs of tonic signaling leading to T cell exhaustion have been observed with CARTyrins unlike scFv-based CAR molecules, which can interact with each other on the surface causing non-specific CAR signaling. The manufacture process of P-BCMA-101 from primary human T cells is straightforward, employs no cytokines, and easily produces enough CARTyrin+ cells to treat patients. Within 18 days of electroporation of purified T cells, we demonstrate > 95% of the cell product is positive for CARTyrin expression and ready to be administered. Notably, our manufacturing process results in > 60% of CARTyrin+ T cells exhibiting a stem-cell memory phenotype (i.e. CD45RA+ CD62L+). P-BCMA-101 cells exhibit specific and robust in vitro activity against BCMA+ tumor targets, ranging from high to very low levels of BCMA, as measured by target-cell killing and CARTyrin-T cell proliferation. Importantly, proliferating P-BCMA-101 cells were highly sensitive in vitro to activation of the safety switch. Finally, we have evaluated the anti-tumor efficacy of P-BCMA-101 in a model of human MM. NSG™ mice were injected IV with 1.5x106 luciferase+ MM.1S cells, an aggressive human MM-derived cell line. After the tumor cells were allowed to grow for 21 days, animals received a single IV administration of 5x106 P-BCMA-101 cells. All untreated control animals demonstrated a marked increase in serum M-protein levels, rapid growth of tumor cells demonstrated by bioluminescent imaging (BLI), and death within four weeks. In stark contrast, 100% of animals that received P-BCMA-101 rapidly eliminated tumors within 7 days as measured by BLI and serum M-protein levels and improved survival out to at least 60 days post-treatment. P-BCMA-101 is the first-in-class of Centyrin-based CAR therapeutics. The CARTyrin, combined with our advanced manufacturing processes, represents a significant improvement over first generation, immunoglobulin-based and virally-transduced CAR-T products. P-BCMA-101 exhibited an advantageous stem-cell memory phenotype and demonstrated specific and potent anti-tumor efficacy against BCMA+ myeloma cells both in vitro and in vivo. Based on these results, we plan to initiate a phase I clinical trial of P-BCMA-101 for the treatment of patients with relapsed and/or refractory MM. Disclosures Hermanson: Poseida Therapeutics: Employment. Barnett:Poseida Therapeutics: Employment. Rengarajan:Poseida Therapeutics: Employment. Codde:Poseida Therapeutics: Employment. Wang:Poseida Therapeutics: Employment. Tan:Poseida Therapeutics: Employment. Martin:Poseida Therapeutics: Employment. Smith:Poseida Therapeutics: Employment. Osertag:Poseida Therapeutics: Employment, Equity Ownership. Shedlock:Poseida Therapeutics: Employment.


Sign in / Sign up

Export Citation Format

Share Document