Abstract B01: Optimizing chemotherapy for the integration of immune therapy in ovarian cancer: Enriching effector T cells in the peritoneal tumor microenvironment using the route of cisplatin administration (IV vs. IP)

Author(s):  
Henning S. De May ◽  
Sharina Palencia Desai ◽  
Ichiko Kinjyo ◽  
Sarah F. Adams
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A372-A373
Author(s):  
Ira Winer ◽  
Lucy Gilbert ◽  
Ulka Vaishampayan ◽  
Seth Rosen ◽  
Christopher Hoimes ◽  
...  

BackgroundALKS 4230 is a novel engineered cytokine that selectively targets the intermediate-affinity interleukin-2 receptor complex to activate CD8+ T cells and natural killer cells.1 The ARTISTRY-1 trial (NCT02799095) has shown encouraging efficacy and acceptable tolerability of ALKS 4230 among patients with advanced solid tumors.2 We report a detailed analysis of ovarian cancer (OC) patients who received combination therapy in ARTISTRY-1.MethodsARTISTRY-1 is an ongoing multicohort phase 1/2 trial exploring intravenous ALKS 4230 as monotherapy and combined with pembrolizumab. OC patients were enrolled into a cohort with mixed anti PD 1/L1 unapproved tumor types who had progressed on prior chemotherapy. OC patients received ALKS 4230 (3 µg/kg) on days 1–5 and pembrolizumab (200 mg) on day 1 of a 21 day cycle. Outcomes presented include antitumor activity (RECIST v1.1) and safety as of 7/24/2020. To evaluate changes in tumor microenvironment (TME), baseline and on-treatment biopsies were collected.ResultsFourteen heavily pretreated patients with OC were enrolled. Patients received a median of 5 (range, 2 11) prior regimens and all were previously treated with platinum based therapy. Among 13 evaluable patients with ≥1 assessment, 9 experienced disease control and 4 experienced disease progression; median treatment duration was approximately 7 weeks. Three patients experienced an objective response, including 1 complete response, 1 partial response (PR), and 1 unconfirmed PR; all were platinum resistant and negative for BRCA mutations. Five patients experienced tumor burden reductions (table 1). Treatment-related adverse events at the doses tested have generally been transient and manageable, with the majority being grade 1 and 2 in severity. Overall, based on preliminary data, the combination with ALKS 4230 did not demonstrate any additive toxicity to that already established with pembrolizumab alone. Additional safety and efficacy data are being collected in ongoing cohorts. In the monotherapy dose escalation portion of the study, ALKS 4230 alone increased markers of lymphocyte infiltration in 1 paired melanoma biopsy (1 of 1; on treatment at cycle 2); CD8+ T cell density and PD-L1 tumor proportion score increased 5.2- and 11 fold, respectively, supporting evidence that ALKS 4230 has immunostimulatory impact on the TME and providing rationale for combining ALKS 4230 with pembrolizumab (figure 1).Abstract 347 Table 1Summary of response observations among patients with ovarian cancerAbstract 347 Figure 1Increased markers of lymphocyte tumor infiltrationAn increase in CD3+CD8+ T cells (A, red = CD3; blue = CD8; purple = CD3+CD8+; teal = tumor marker), GranzymeB (B, red = CD8; green = granzymeB; yellow = granzymeB+CD8+; teal = tumor marker), and PD-L1 (C, red = PD-L1; blue = tumor marker) in the tumor microenvironment of a single patient was observed after the patient received monotherapy ALKS 4230ConclusionsThe combination of ALKS 4230, an investigational agent, and pembrolizumab demonstrates an acceptable safety profile and provides some evidence of tumor shrinkage and disease stabilization in some patients with heavily pretreated OC. This regimen could represent a new therapeutic option for these patients.AcknowledgementsThe authors would like to thank all of the patients who are participating in this trial and their families. The trial is sponsored by Alkermes, Inc. Medical writing and editorial support was provided by Parexel and funded by Alkermes, Inc.Trial RegistrationClinicalTrials. gov NCT02799095Ethics ApprovalThis trial was approved by Ethics and Institutional Review Boards (IRBs) at all trial sites; IRB reference numbers 16–229 (Dana-Farber Cancer Institute), MOD00003422/PH285316 (Roswell Park Comprehensive Cancer Center), 20160175 (Western IRB), i15-01394_MOD23 (New York University School of Medicine), TRIAL20190090 (Cleveland Clinic), and 0000097 (ADVARRA).ReferencesLopes JE, Fisher JL, Flick HL, Wang C, Sun L, Ernstoff MS, et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J Immunother Cancer 2020;8:e000673. doi: 10.1136/jitc-2020-000673.Vaishampayan UN, Muzaffar J, Velcheti V, Winer I, Hoimes CJ, Rosen SD, et al. ALKS 4230 monotherapy and in combination with pembrolizumab (pembro) in patients (pts) with refractory solid tumors (ARTISTRY-1). Oral presentation at: European Society for Medical Oncology Annual Meeting; September 2020; virtual.


2019 ◽  
Vol 343 ◽  
pp. 103730 ◽  
Author(s):  
Chiara Massa ◽  
Barbara Seliger

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A553-A553
Author(s):  
McLane Watson ◽  
Paolo Vignali ◽  
Steven Mullet ◽  
Abigail Overacre-Delgoffe ◽  
Ronal Peralta ◽  
...  

BackgroundRegulatory T (Treg) cells are vital for preventing autoimmunity but are a major barrier to robust cancer immunity as the tumor microenvironment (TME) recruits and promotes their function. The deregulated cellular metabolism of tumor cells leads to a metabolite-depleted, hypoxic, and acidic TME. While the TME impairs the effector function of highly glycolytic tumor infiltrating CD8 T cells, Treg cell suppressive function is maintained. Further, studies of in vitro induced and ex vivo Treg cells reveal a distinct metabolic profile compared to effector T cells. Thus, it may be that the altered metabolic landscape of the TME and the increased activity of intratumoral Treg cells are linked.MethodsFlow cytometry, isotopic flux analysis, Foxp3 driven Cre-lox, glucose tracers, Seahorse extracellular flux analysis, RNA sequencing.ResultsHere we show Treg cells display heterogeneity in terms of their glucose metabolism and can engage an alternative metabolic pathway to maintain their high suppressive function and proliferation within the TME and other tissues. Tissue derived Treg cells (both at the steady state and under inflammatory conditions) show broad heterogeneity in their ability to take up glucose. However, glucose uptake correlates with poorer suppressive function and long-term functional stability, and culture of Treg cells in high glucose conditions decreased suppressive function. Treg cells under low glucose conditions upregulate genes associated with the uptake and metabolism of the glycolytic end-product lactic acid. Treg cells withstand high lactate conditions, and lactate treatment prevents the destabilizing effects of high glucose culture. Treg cells utilize lactate within the TCA cycle and generate phosphoenolpyruvate (PEP), a critical intermediate that can fuel intratumoral Treg cell proliferation in vivo. Using mice with a Treg cell-restricted deletion of lactate transporter Slc16a1 (MCT1) we show MCT1 is dispensable for peripheral Treg cell function but required intratumorally, resulting in slowed tumor growth and prolonged survival.ConclusionsThese data support a model in which Treg cells are metabolically flexible such that they can utilize ‘alternative’ metabolites present in the TME to maintain their suppressive identity. Further, our studies support the notion that tumors avoid immune destruction not only by depriving effector T cells of essential nutrients, but also by metabolically supporting regulatory T cells.


Blood ◽  
2009 ◽  
Vol 114 (6) ◽  
pp. 1141-1149 ◽  
Author(s):  
Ilona Kryczek ◽  
Mousumi Banerjee ◽  
Pui Cheng ◽  
Linhua Vatan ◽  
Wojciech Szeliga ◽  
...  

Abstract Th17 cells play an active role in autoimmune diseases. However, the nature of Th17 cells is poorly understood in cancer patients. We studied Th17 cells, the associated mechanisms, and clinical significance in 201 ovarian cancer patients. Tumor-infiltrating Th17 cells exhibit a polyfunctional effector T-cell phenotype, are positively associated with effector cells, and are negatively associated with tumor-infiltrating regulatory T cells. Tumor-associated macrophages promote Th17 cells through interleukin-1β (IL-1β), whereas tumor-infiltrating regulatory T cells inhibit Th17 cells through an adenosinergic pathway. Furthermore, through synergistic action between IL-17 and interferon-γ, Th17 cells stimulate CXCL9 and CXCL10 production to recruit effector T cells to the tumor microenvironment. The levels of CXCL9 and CXCL10 are associated with tumor-infiltrating effector T cells. The levels of tumor-infiltrating Th17 cells and the levels of ascites IL-17 are reduced in more advanced diseases and positively predict patient outcome. Altogether, Th17 cells may contribute to protective human tumor immunity through inducing Th1-type chemokines and recruiting effector cells to the tumor microenvironment. Inhibition of Th17 cells represents a novel immune evasion mechanism. This study thus provides scientific and clinical rationale for developing novel immune-boosting strategies based on promoting the Th17 cell population in cancer patients.


Cancer Cell ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 614-615 ◽  
Author(s):  
Christina Pfirschke ◽  
Marie Siwicki ◽  
Hsin-Wei Liao ◽  
Mikael J. Pittet

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3052-3052 ◽  
Author(s):  
Marianne Imhof ◽  
Markus Lipovac ◽  
Lukas Angleitner-Boubenizek ◽  
Johannes Barta ◽  
Ivan Gomez ◽  
...  

3052 Background: Prognosis of ovarian cancer remains poor after initial responsiveness to surgery and chemotherapy followed by high recurrence and mortality rates and new experimental approaches are warranted. Our goal was to evaluate a novel DC-based vaccine, which exploits a unique dual loading strategy to amplify specific anti-tumor short- and long-term immune responses to delay or even prevent recurrent and metastatic disease. Methods: Monocytes were collected via apheresis, matured into DCs and pulsed with two universal tumor associated antigens (uTAA) in our GMP facility. DCs were loaded with TERT and Survivin via two different pathways (mRNA and peptide) to elicit CD8+ and CD4+T cells directly. Endpoints of the study were tolerability and safety, immunological and clinical responses. T cell responses against the IMP and loaded antigens were evaluated by cytokine bead array (CBA) and intracellular staining assays. Results: 15 non HLA-restricted patients with advanced ovarian cancer were enrolled 8 weeks after standard treatment (surgery and chemotherapy). Each patient was vaccinated intradermally on a weekly or fortnightly basis with a maximum of 8 doses of 13*106 double loaded DCs. The majority of treatment related side effects were grade 1 fever and erythema. Overall the therapy was well tolerated. Immune response data is available for 14/15 patients, 1 was withdrawn after the first administration. The IMP leads to strong immune responses with high frequency (>90%), which is proven for both uTAAs in CD8+ as well as CD4+ T cells. A clear positive trend in progression free survival is demonstrated compared to matched historical control. Conclusions: Therapy with our unique double loaded DC vaccine was feasible, safe and well-tolerated by patients. The vaccine was highly immune stimulatory and elicited both, long-term and short-term anti-tumor immune responses, establishing a promising platform for immune therapy for ovarian cancer and all solid tumors in general. The first two authors contributed equally. Clinical trial information: NCT01456065.


2020 ◽  
Vol 38 (5_suppl) ◽  
pp. 7-7
Author(s):  
Paul G. Pavicic ◽  
Patricia A. Rayman ◽  
Hussein Al-Sudani ◽  
C. Marcela Diaz-Montero ◽  
Haider Mahdi

7 Background: Epithelial ovarian cancer (OC) is the most lethal gynecologic cancer with ~22,000 women diagnosed annually in the US. The impact of immune checkpoint inhibition (ICI) in the treatment of solid tumors has been significant. However, the response rates for OC are low ranging from 11-15%. It is critical to explore strategies to enhance the efficacy of ICI immunotherapy in OC. Targeting immunosuppressive factors and cells within the tumor microenvironment (TME) represents a feasible approach. The use of IL12 is attractive because induces potent antitumor activity by targeting myeloid cells and lymphocytes. However its clinical application has been hindered by its potential systemic toxicity. Here we explore the use of low dose intraperitoneal IL12 to enhance the antitumor activity of dual ICI in OC. Methods: Mice bearing ID8-VEGF tumors implanted intraperitoneally received either anti-PD1 alone or dual ICI treatment of anti-PD1 plus anti-CTLA4 with or without low dose IL12. Ascites accumulation was used as surrogate for tumor progression and determined by assessing weight increase. Blood and ascites were analyzed by flow cytometry for frequency of PMN-MDSC, M-MDSC, and activated T cells. Results: Low dose IL12 alone induced a significant delay in ascites accumulation when compared to untreated controls or mice treated with PD1 monotherapy or dual ICI. Addition of IL12 to dual ICI resulted in significant tumor regression and extended survival benefit compared to dual ICI alone. A synergistic effect of IL12 was not observed when combined with PD1 monotherapy. Antitumor responses associated with a marked decrease in the frequency of M-MDSC in blood and a decrease in both PMN- and M-MDSC in ascites. Decrease in MDSC associated with elevated levels of activated T cells. Conclusions: Low dose IL12 can induce regression of ID8-VEGF tumors. However, durable responses were only observed when IL12 was added to dual ICI. This suggests that IL12 can induce changes in the TME, particularly on MDSC, that can potentiate the antitumor activity of dual ICI. Our findings also suggest a crucial role of CTLA4 blockade perhaps via Treg targeting.


2016 ◽  
Vol 4 (11) ◽  
pp. 948-958 ◽  
Author(s):  
Xiao X. Wei ◽  
Stephen Chan ◽  
Serena Kwek ◽  
Jera Lewis ◽  
Vinh Dao ◽  
...  

2020 ◽  
Author(s):  
Ravikumar Muthuswamy ◽  
AJ Robert McGray ◽  
Sebastiano Battaglia ◽  
Wenjun He ◽  
Anthony Miliotto ◽  
...  

AbstractWhile the beneficial role played by tissue-resident memory T cells (Trm) in tumor control has emerged, the chemotactic mechanisms associated with their localization and retention in the tumor microenvironment (TME) of cancers including ovarian are poorly understood. The current study has identified chemokine receptor CXCR6 as crucial for Trm responses to ovarian cancer by promoting their localization and retention in the ovarian tumor microenvironment. In human ovarian cancer patients, CXCR6 significantly marked CD8+ CD103+ tumor-infiltrating Trm cells. Functional studies in mice revealed high expression of CXCR6 in tumor-specific T cells that reside in tissues, but not by those in circulation. Knockout of CXCR6 in tumor-specific T cells led to a heightened circulatory response in blood, but diminished resident memory cell accumulation in tumors, culminating in poor tumor control. Analysis of Wild type (Wt.) and CXCR6KO (KO) tumor-specific T cells trafficking in recipient mice using bioluminescent imaging revealed that compared to Wt., KO T cells preferentially localized to the spleen, indicating the possibility of reduced retention in tumor tissues. These findings indicate that CXCR6 by mediating increased retention of tumor-specific T cells in the ovarian tumor microenvironment, promotes resident memory T cell-mediated surveillance and control of ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document