Cytokine Production by CD4+ and CD8+ T Cells in Mice following Primary Exposure to Chemical Allergens: Evidence for Functional Differentiation of T Lymphocytes in vivo

1998 ◽  
Vol 116 (2) ◽  
pp. 116-123 ◽  
Author(s):  
A. Moussavi ◽  
R.J. Dearman ◽  
I. Kimber ◽  
D.M. Kemeny
2018 ◽  
Vol 215 (9) ◽  
pp. 2265-2278 ◽  
Author(s):  
Colleen M. Lau ◽  
Ioanna Tiniakou ◽  
Oriana A. Perez ◽  
Margaret E. Kirkling ◽  
George S. Yap ◽  
...  

An IRF8-dependent subset of conventional dendritic cells (cDCs), termed cDC1, effectively cross-primes CD8+ T cells and facilitates tumor-specific T cell responses. Etv6 is an ETS family transcription factor that controls hematopoietic stem and progenitor cell (HSPC) function and thrombopoiesis. We report that like HSPCs, cDCs express Etv6, but not its antagonist, ETS1, whereas interferon-producing plasmacytoid dendritic cells (pDCs) express both factors. Deletion of Etv6 in the bone marrow impaired the generation of cDC1-like cells in vitro and abolished the expression of signature marker CD8α on cDC1 in vivo. Moreover, Etv6-deficient primary cDC1 showed a partial reduction of cDC-specific and cDC1-specific gene expression and chromatin signatures and an aberrant up-regulation of pDC-specific signatures. Accordingly, DC-specific Etv6 deletion impaired CD8+ T cell cross-priming and the generation of tumor antigen–specific CD8+ T cells. Thus, Etv6 optimizes the resolution of cDC1 and pDC expression programs and the functional fitness of cDC1, thereby facilitating T cell cross-priming and tumor-specific responses.


1995 ◽  
Vol 59 (8) ◽  
pp. 1155-1161
Author(s):  
SHERRI Y. CHAN ◽  
LISA A. DEBRUYNE ◽  
RICHARD E. GOODMAN ◽  
ERNST J. EICHWALD ◽  
D. KEITH BISHOP

1995 ◽  
Vol 59 (8) ◽  
pp. 1155-1161 ◽  
Author(s):  
SHERRI Y. CHAN ◽  
LISA A. DEBRUYNE ◽  
RICHARD E. GOODMAN ◽  
ERNST J. EICHWALD ◽  
D. KEITH BISHOP

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A595-A595
Author(s):  
Alexander Muik ◽  
Isil Altintas ◽  
Rachelle Kosoff ◽  
Friederike Gieseke ◽  
Kristina Schödel ◽  
...  

BackgroundCheckpoint inhibitors targeting the PD-1/PD-L1 axis (CPI) have changed the treatment paradigm and prognosis for patients with advanced solid tumors; however, many patients experience limited benefit due to treatment resistance. 4-1BB co-stimulation can activate cytotoxic T-cell- and NK-cell-mediated anti-tumor immunity and has been shown to synergize with CPI in preclinical models. DuoBody-PD­L1×4-1BB is a first-in-class, Fc-silenced, bispecific next-generation checkpoint immunotherapy that activates T cells through PD-L1 blockade and simultaneous PD-L1-dependent 4-1BB co-stimulation. Here we present preclinical evidence for the mechanism of action of DuoBody-PD-L1×4-1BB, and proof-of-concept using mouse-reactive mbsAb-PD-L1×4-1BB in vivo.MethodsRNA sequencing analyses was performed on primary human CD8+ T cells that were co-cultured with PD-L1+ monocytes in the presence of anti-CD3/anti-CD28 and test compounds. T-cell proliferation and cytokine production were analyzed in primary human T-cell and mixed lymphocyte reaction (MLR) assays in vitro, and using patient-derived tumor-infiltrating lymphocytes (TILs). Cytotoxic activity was assessed in co-cultures of CLDN6+PD-L1+ MDA-MB-231 tumor cells and CLDN6-TCR+CD8+ T cells. Anti-tumor activity of mbsAb-PD-L1×4-1BB was tested in vivo using the CT26 mouse tumor model. Immunophenotyping of the tumor microenvironment (TME), tumor-draining lymph nodes (tdLNs) and peripheral blood was performed by flow cytometry.ResultsDuoBody-PD-L1×4-1BB significantly induced expression of genes associated with immune cell proliferation, migration and cytokine production in activated CD8+ T cells, which were not altered by CPI. DuoBody-PD-L1×4-1BB dose-dependently enhanced expansion of human TILs ex vivo. DuoBody-PD-L1×4-1BB dose-dependently enhanced T-cell proliferation and pro-inflammatory cytokine production in vitro (e.g. IFNγ and TNFα; in polyclonal and antigen-specific T-cell proliferation assays and MLR), which was dependent on crosslinking to PD-L1+ cells and superior to CPI or the combination of Fc-silenced PD-L1- and 4-1BB-specific antibodies. DuoBody-PD-L1x4-1BB induced upregulation of degranulation marker CD107a and granzyme B in CD8+ T cells, resulting in antigen-specific T-cell-mediated cytotoxicity of MDA-MB-231 tumor cells in vitro, superior to CPI. In mice bearing subcutaneous CT26 tumors, a model that was insensitive to PD-L1 blockade, mbsAb-PD-L1×4-1BB elicited tumor rejection in the majority of the mice at active dose levels and significantly improved survival. Dose-dependent anti-tumor activity was associated with expansion of tumor antigen-specific T cells in the blood and enhanced immune-cell activation in tdLNs and TME.ConclusionsCombining PD-L1 blockade with conditional 4-1BB co-stimulation using bispecific antibodies induced T-cell activation, expansion, and cytotoxic activity in vitro and potent anti-tumor activity in vivo superior to CPI. DuoBody-PD-L1×4-1BB is currently being evaluated in patients with advanced solid tumors in a first-in-human trial (NCT03917381).Ethics ApprovalAll mice studies were performed by BioNTech SE at its research facilities in Germany, and the mice were housed in accordance with German federal and state policies on animal research. All experiments were approved by the regulatory authorities for animal welfare in Germany. The use of tumor tissue resections was approved by BioNTech SE‘s Ethics Board, approval number 837.309.12 (8410-F).


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1343-1343
Author(s):  
Marianne Hokland ◽  
Mikkel S. Petersen ◽  
Charlotte C. Fleischer ◽  
Hans Stødkilde-Jørgensen ◽  
Søren B. Hansen ◽  
...  

Abstract Tracking adoptively transferred antigen-specific T lymphocytes is an important prerequisite for devising better protocols for cellular therapy. To this end we have developed a highly sensitive method for “in situ” visualization of labelled lymphocytes in vivo by combined PET and magnetic resonance imaging (MRI) to monitor the distribution of adoptively transferred tumour-specific T cells in a mouse model system. Moreover, quantitation of the adoptively transferred cells in tumor was performed by flow cytometry. C57BL/6J mice carrying subcutaneous tumours of the ovalbumin (OVA)-expressing malignant melanoma cell line B16-OVA were adoptively transferred with OVA-specific CD8+ T cells labelled with 124IdU. Five days after transfer of T cells, mice were killed and subjected to PET and MR imaging. Using a newly developed method for co-registration of the two image modalities, the anatomical localisation of the transferred cells was visualised and the amount of radioactivity in various anatomical locations very accurately determined. For quantitation of tumor infiltrating non-labelled OVA-specific CD8+ T cells by flow cytometry (using AbsoluteCount Beads), tumors were removed from mice day 1 until day 8 following adoptive transfer (6 mice/group) and prepared for single cell suspension before labeled with anti-CD8-FITC and SIINFEKL-Tetramer-PE. Results showed a clear tumor localization of the adoptively transferred OVA-specific T cells in the tumours. In two independent experiments comprising 12 and 13 evaluable mice, respectively, we found a mean value of 0.909 +/− 0.468 Bq and 0.926 +/− 0.553 Bq in the tumours, and only 0.182 +/− 0.479 Bq and 0.026 +/− 0.480 Bq in the corresponding contralateral control volumes. The difference in activity between the tumour regions and the control regions was statistically highly significant with 2p-values of 0.002 and 0.006 for the two experiments. Using flow cytometry it was shown that the number of OVA specific T lymphocytes accumulating in tumor gradually increased until day 5 after transfer when an average of 3.3 million SIINFEKL-specific cells per gram tumor tissue was found. From day 5 until day 8 the number of SIINFEKL-specific cells per gram tumor tissue fluctuated at a fairly constant level. This method presented for tracking adoptively transfered tumor specific T lymphocytes represent a significant advancement for studies of adoptively transferred specific T cells, and could potentially be developed for diagnostic purposes. Moreover, since these studies show that tumor-specific T cells home to subcutaneous tumours in substantial numbers, we suggest that these migrating cells could be employed in a new form of therapy as carriers of toxic substances to tumors.


2015 ◽  
Vol 1 (2) ◽  
pp. 122-128
Author(s):  
Syuichi Koarada ◽  
Yuri Sadanaga ◽  
Natsumi Nagao ◽  
Satoko Tashiro ◽  
Rie Suematsu ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4253-4259 ◽  
Author(s):  
Elodie Belnoue ◽  
Michèle Kayibanda ◽  
Jean-Christophe Deschemin ◽  
Mireille Viguier ◽  
Matthias Mack ◽  
...  

Abstract Infection of susceptible mouse strains with Plasmodium berghei ANKA (PbA) is a valuable experimental model of cerebral malaria (CM). Two major pathologic features of CM are the intravascular sequestration of infected erythrocytes and leukocytes inside brain microvessels. We have recently shown that only the CD8+ T-cell subset of these brain-sequestered leukocytes is critical for progression to CM. Chemokine receptor–5 (CCR5) is an important regulator of leukocyte trafficking in the brain in response to fungal and viral infection. Therefore, we investigated whether CCR5 plays a role in the pathogenesis of experimental CM. Approximately 70% to 85% of wild-type and CCR5+/- mice infected with PbA developed CM, whereas only about 20% of PbA-infected CCR5-deficient mice exhibited the characteristic neurologic signs of CM. The brains of wild-type mice with CM showed significant increases in CCR5+ leukocytes, particularly CCR5+ CD8+ T cells, as well as increases in T-helper 1 (Th1) cytokine production. The few PbA-infected CCR5-deficient mice that developed CM exhibited a similar increase in CD8+ T cells. Significant leukocyte accumulation in the brain and Th1 cytokine production did not occur in PbA-infected CCR5-deficient mice that did not develop CM. Moreover, experiments using bone marrow (BM)–chimeric mice showed that a reduced but significant proportion of deficient mice grafted with CCR5+ BM develop CM, indicating that CCR5 expression on a radiation-resistant brain cell population is necessary for CM to occur. Taken together, these results suggest that CCR5 is an important factor in the development of experimental CM.


Sign in / Sign up

Export Citation Format

Share Document