Tumor Localization and Quantitation of Adoptively Transfered T Lymphocytes in a Murine Model.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1343-1343
Author(s):  
Marianne Hokland ◽  
Mikkel S. Petersen ◽  
Charlotte C. Fleischer ◽  
Hans Stødkilde-Jørgensen ◽  
Søren B. Hansen ◽  
...  

Abstract Tracking adoptively transferred antigen-specific T lymphocytes is an important prerequisite for devising better protocols for cellular therapy. To this end we have developed a highly sensitive method for “in situ” visualization of labelled lymphocytes in vivo by combined PET and magnetic resonance imaging (MRI) to monitor the distribution of adoptively transferred tumour-specific T cells in a mouse model system. Moreover, quantitation of the adoptively transferred cells in tumor was performed by flow cytometry. C57BL/6J mice carrying subcutaneous tumours of the ovalbumin (OVA)-expressing malignant melanoma cell line B16-OVA were adoptively transferred with OVA-specific CD8+ T cells labelled with 124IdU. Five days after transfer of T cells, mice were killed and subjected to PET and MR imaging. Using a newly developed method for co-registration of the two image modalities, the anatomical localisation of the transferred cells was visualised and the amount of radioactivity in various anatomical locations very accurately determined. For quantitation of tumor infiltrating non-labelled OVA-specific CD8+ T cells by flow cytometry (using AbsoluteCount Beads), tumors were removed from mice day 1 until day 8 following adoptive transfer (6 mice/group) and prepared for single cell suspension before labeled with anti-CD8-FITC and SIINFEKL-Tetramer-PE. Results showed a clear tumor localization of the adoptively transferred OVA-specific T cells in the tumours. In two independent experiments comprising 12 and 13 evaluable mice, respectively, we found a mean value of 0.909 +/− 0.468 Bq and 0.926 +/− 0.553 Bq in the tumours, and only 0.182 +/− 0.479 Bq and 0.026 +/− 0.480 Bq in the corresponding contralateral control volumes. The difference in activity between the tumour regions and the control regions was statistically highly significant with 2p-values of 0.002 and 0.006 for the two experiments. Using flow cytometry it was shown that the number of OVA specific T lymphocytes accumulating in tumor gradually increased until day 5 after transfer when an average of 3.3 million SIINFEKL-specific cells per gram tumor tissue was found. From day 5 until day 8 the number of SIINFEKL-specific cells per gram tumor tissue fluctuated at a fairly constant level. This method presented for tracking adoptively transfered tumor specific T lymphocytes represent a significant advancement for studies of adoptively transferred specific T cells, and could potentially be developed for diagnostic purposes. Moreover, since these studies show that tumor-specific T cells home to subcutaneous tumours in substantial numbers, we suggest that these migrating cells could be employed in a new form of therapy as carriers of toxic substances to tumors.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3539-3539
Author(s):  
Jacopo Mariotti ◽  
Kaitlyn Ryan ◽  
Paul Massey ◽  
Nicole Buxhoeveden ◽  
Jason Foley ◽  
...  

Abstract Abstract 3539 Poster Board III-476 Pentostatin has been utilized clinically in combination with irradiation for host conditioning prior to reduced-intensity allogeneic hematopoietic stem cell transplantation (allo-HSCT); however, murine models utilizing pentostatin to facilitate engraftment across fully MHC-disparate barriers have not been developed. To address this deficit in murine modeling, we first compared the immunosuppressive and immunodepleting effects of pentostatin (P) plus cyclophosphamide (C) to a regimen of fludarabine (F) plus (C) that we previously described. Cohorts of mice (n=5-10) received a three-day regimen consisting of P alone (1 mg/kg/d), F alone (100 mg/kg/d), C alone (50 mg/kg/d), or combination PC or FC. Combination PC or FC were each more effective at depleting and suppressing splenic T cells than either agent alone (depletion was quantified by flow cytometry; suppression was quantified by cytokine secretion after co-stimulation). The PC and FC regimens were similar in terms of yielding only modest myeloid suppression. However, the PC regimen was more potent in terms of depleting host CD4+ T cells (p<0.01) and CD8+ T cells (p<0.01), and suppressing their function (cytokine values are pg/ml/0.5×106 cells/ml; all comparisons p<0.05) with respect to capacity to secrete IFN-g (13±5 vs. 48±12), IL-2 (59±44 vs. 258±32), IL-4 (34±10 vs. 104±12), and IL-10 (15±3 vs. 34±5). Next, we evaluated whether T cells harvested from PC-treated and FC-treated hosts were also differentially immune suppressed in terms of capacity to mediate an alloreactive host-versus-graft rejection response (HVGR) in vivo when transferred to a secondary host. BALB/c hosts were lethally irradiated (1050 cGy; day -2), reconstituted with host-type T cells from PC- or FC-treated recipients (day -1; 0.1 × 106 T cells transferred), and challenged with fully allogeneic transplant (B6 donor bone marrow, 10 × 106 cells; day 0). In vivo HVGR was quantified on day 7 post-BMT by cytokine capture flow cytometry: absolute number of host CD4+ T cells secreting IFN-g in an allospecific manner was ([x 106/spleen]) 0.02 ± 0.008 in recipients of PC-treated T cells and 1.55 ± 0.39 in recipients of FC-treated cells (p<0.001). Similar results were obtained for allospecific host CD8+ T cells (p<0.001). Our second objective was to characterize the host immune barrier for engraftment after PC treatment. BALB/c mice were treated for 3 days with PC and transplanted with TCD B6 bone marrow. Surprisingly, such PC-treated recipients developed alloreactive T cells in vivo and ultimately rejected the graft. Because the PC-treated hosts were heavily immune depleted at the time of transplantation, we reasoned that failure to engraft might be due to host immune T cell reconstitution after PC therapy. In an experiment performed to characterize the duration of PC-induced immune depletion and suppression, we found that although immune depletion was prolonged, immune suppression was relatively transient. To develop a more immune suppressive regimen, we extended the C therapy to 14 days (50 mg/Kg) and provided a longer interval of pentostatin therapy (administered on days 1, 4, 8, and 12). This 14-day PC regimen yielded CD4+ and CD8+ T cell depletion similar to recipients of a lethal dose of TBI, more durable immune depletion, but again failed to achieve durable immune suppression, therefore resulting in HVGR and ultimate graft rejection. Finally, through intensification of C therapy (to 100 mg/Kg for 14 days), we were identified a PC regimen that was both highly immune depleting and achieved prolonged immune suppression, as defined by host inability to recover T cell IFN-g secretion for a full 14-day period after completion of PC therapy. Finally, our third objective was to determine with this optimized PC regimen might permit the engraftment of MHC disparate, TCD murine allografts. Indeed, using a BALB/c-into-B6 model, we found that mixed chimerism was achieved by day 30 and remained relatively stable through day 90 post-transplant (percent donor chimerism at days 30, 60, and 90 post-transplant were 28 ± 8, 23 ± 9, and 21 ± 7 percent, respectively). At day 90, mixed chimerism in myeloid, T, and B cell subsets was observed in the blood, spleen, and bone marrow compartments. Pentostatin therefore synergizes with cyclophosphamide to deplete, suppress, and limit immune reconstitution of host T cells, thereby allowing engraftment of T cell-depleted allografts across MHC barriers. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1041-1041
Author(s):  
Emily R Summerbell ◽  
Cynthia R. Giver ◽  
Sravanti Rangaraju ◽  
Katarzyna Anna Darlak ◽  
Edmund K. Waller

Abstract Introduction Vasoactive intestinal peptide (VIP) is a neuropeptide hormone that suppresses Th1 immunity and inhibits antiviral immunity. Decreased Th1 immunity is problematic for allogeneic bone marrow transplant (allo-BMT) patients requiring T-cell immunity against blood cancers (Graft-versus-Tumor) and against secondary infections such as CMV. VIPhyb, a modified VIP peptide, is a VIP receptor antagonist that decreases VIP signaling. VIP-knockout mice and mice treated with VIPhyb after allo-BMT are known to have better antiviral immunity and survival after CMV infection without increasing GvHD (Li et al. PLoS One. 2013 May 27;8(5):e63381) (Li et al. Blood. 2013 Mar 21;121(12):2347-51.), thus making VIPhyb of interest for pharmacological use in humans to improve the efficacy of allo-BMT The effects of VIPhyb on T-cell immunity are not yet fully profiled. This study aimed to analyze the effects of VIPhyb on CD4+ and CD8+ T-cell proliferation and activation in order to better understand the mechanistic implications of VIP inhibition on T-cell adaptive immunity. This study also aimed to show that mixed lymphocyte reactions (MLRs), an in vitro allo-BMT model, could be used to provide rapid and reliable results that are consistent with in vivo data. It was hypothesized that VIPhyb would increase T-cell immunity as profiled by: increased T-cell proliferation, CD69 and PD1 co-upregulation in early T-cell activation, and PD1 downregulation in T-cells after initial activation. Methods Splenocytes from two histoincompatible mice were cultured together at 37°C in a 1:1 ratio in a one-way MLR. BALB/c splenocytes (stimulators) were irradiated at 20Gy, and Pepboy splenocytes (responders) were labeled with CFSE to trace proliferation. VIPhyb was added daily to the cell cultures in doses of 0.1μM, 0.3μM, 1μM, or 3μM. Treatment groups were compared to a PBS control. Proliferation, CD69, and PD1 were assessed by flow cytometry on the BD FACSAria. All results are shown as mean ± SEM (n=3). One-way ANOVA tests with Dunnett post-tests were calculated using Prism software. *p < 0.05; **p < 0.01; ***p < 0.001 Results VIPhyb increased CD4+ and CD8+ T-cell proliferation: 3, 5, and 7 days after initiating a one-way MLR, CFSE expression of Pepboy responder T-cells was assessed using flow cytometry (Figure 1). As the VIPhyb dose increased, the percentage of initial splenocytes that underwent proliferation increased in both CD4+ and CD8+ T-cells. VIPhyb increased early T-cell CD69 expression and abrogated later PD1 upregulation in CD8+ T-cells: 3, 5, and 7 days after initiating a one-way MLR, expression levels of CD69 and PD1 on Pepboy responder T-cells were assessed by flow cytometry. Significant upregulation of CD69 on CD4+ and CD8+ T-cells on day 3 occurred with increasing VIPhyb doses (Figures 2A and 2B). PD1 was co-upregulated with CD69 during early activation, and VIPhyb significantly decreased PD1 expression on CD8+ T-cells on days 5 and 7 (Figures 2C and 2D). Conclusions VIPhyb increased T-cell proliferation; CD8+ T-cells were affected more significantly. VIPhyb increased early co-upregulation of CD69 and PD1 in all T-cells and significantly decreased later CD8+ T-cell PD1 expression, indicating that VIPhyb increases T-cell activation. We hypothesize that the decreased PD1 expression will be critical for understanding the pathways involved in VIP inhibition. Importantly, since it has been shown in vivo that VIPhyb does not increase GvHD, then it can be assumed that the VIPhyb-induced T-cell proliferation and activation will increase GvL and adaptive immunity without increasing alloreactivity. Notably, these results are consistent with published in vivo data, which demonstrates that the MLR can be used as a faster method of analyzing pharmacological compounds than in vivo experiments. Given these results, VIPhyb is still of interest as a potential therapy for allo-BMT patients. Disclosures: No relevant conflicts of interest to declare.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2615
Author(s):  
Iwona Kwiecień ◽  
Elżbieta Rutkowska ◽  
Krzysztof Kłos ◽  
Ewa Więsik-Szewczyk ◽  
Karina Jahnz-Różyk ◽  
...  

Cell response to novel coronavirus disease 19 (COVID-19) is currently a widely researched topic. The assessment of leukocytes population and the maturation of both B and T lymphocytes may be important in characterizing the immunological profile of COVID-19 patients. The aim of the present study was to evaluate maturation of B and T cells in COVID-19 patients with interstitial lesions on chest X-ray (COVID-19 X-ray (+)), without changes on X-ray (COVID-19 X-ray (−)) and in healthy control. The study group consisted of 23 patients divided on two groups: COVID-19 X-ray (+) n = 14 and COVID-19 X-ray (−) n = 9 and control n = 20. The flow cytometry method was performed. We observed a significantly higher percentage of plasmablasts and lower CD4+ lymphocytes in COVID-19 X-ray (+) patients than in COVID-19 X-ray (−) and control. In the COVID-19 X-ray (+) patients, there was a lower proportion of effector CD4+ T cells, naïve CD8+ T cells and higher central memory CD4+ cells and effector CD8+ T cells than control. The above results showed that the assessment of selected cells of B and T lymphocytes by flow cytometry can distinguish patients with COVID-19 and differentiate patients with and without changes on chest X-ray.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A47.2-A48
Author(s):  
E Criado-Moronati ◽  
A Gosselink ◽  
J Kollet ◽  
A Dzionek ◽  
B Heemskerk

BackgroundThe adoptive cell transfer (ACT) of tumor-infiltrating T lymphocytes (TILs) has shown remarkable results in patients with different cancer types. The antitumor effect of this therapy is mainly attributed to a small fraction of tumor-reactive T lymphocytes (TRLs) that recognize mutated peptides as well as overexpressed self-antigens. Therefore, the enrichment and expansion of TRLs constitutes a promising immunotherapy approach. However, the specific targeting of individual mutated antigens represents a daunting challenge for widespread therapeutic application. Alternatively, we hypothesize that TRLs could be identified and enriched by a surface marker (or combination thereof) in an antigen-independent manner as a result of the chronic antigen exposure and other factors present in the tumor microenvironment (TME).Materials and MethodsWe screened T cell activation and exhaustion markers, among others, on different tumor tissues using the MACSima™ Imaging Platform, an instrument for the highly multiplexed immunofluorescence imaging technology MICS (Multiparameter Imaging Cell Screen), enabling investigation of hundreds of markers on a single section. Moreover, flow cytometry and single-cell RNA sequencing analyses of T cells from tumor digests were performed to complement the characterization of TILs.ResultsThe MICS results highlighted the complexity of the TME, mainly composed of tumor cells, fibroblasts and endothelial vessels. In some cases, an extensive immune infiltrate consisted of T cells, plasma cells, some B cells and distinct myeloid cells was observed. Particularly, CD8 T cells from different tumor areas exhibited a tissue-resident memory phenotype with the expression of CD69, CD45RO or CD103. Activated/exhausted CD8 T cells were homogenously found across the imaged tumor areas. However, there was a tendency to find them in close proximity to tumor cells, especially for CD8 subsets expressing CD39 and other relevant markers, which may suggest the identification of tumor-reactive CD8 T cell populations. Flow cytometry data revealed the presence of similar T cell phenotypes in the patient´s TILs from tumor digests.ConclusionsThis imaging technology offers the possibility to study multiple parameters—including the localization—of relevant cells in the TME such as T cells. The phenotypic and functional characterization of different T cell subsets will allow the further investigation of their anti-tumor reactivity. Ultimately, the enrichment and expansion of the identified tumor-reactive T cell population hold great promises to improve the efficiency of T cell therapy against cancer.Disclosure InformationE. Criado-Moronati: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. A. Gosselink: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. J. Kollet: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. A. Dzionek: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. B. Heemskerk: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG.


2021 ◽  
pp. 1-10
Author(s):  
Ravi Medikonda ◽  
John Choi ◽  
Ayush Pant ◽  
Laura Saleh ◽  
Denis Routkevitch ◽  
...  

OBJECTIVE Immune checkpoint inhibitors such as anti–programmed cell death protein 1 (anti-PD-1) have shown promise for the treatment of cancers such as melanoma, but results for glioblastoma (GBM) have been disappointing thus far. It has been suggested that GBM has multiple mechanisms of immunosuppression, indicating a need for combinatorial treatment strategies. It is well understood that GBM increases glutamate in the tumor microenvironment (TME); however, the significance of this is not well understood. The authors posit that glutamate upregulation in the GBM TME is immunosuppressive. The authors utilized a novel glutamate modulator, BHV-4157, to determine synergy between glutamate modulation and the well-established anti-PD-1 immunotherapy for GBM. METHODS C57BL/6J mice were intracranially implanted with luciferase-tagged GL261 glioma cells. Mice were randomly assigned to the control, anti-PD-1, BHV-4157, or combination anti-PD-1 plus BHV-4157 treatment arms, and median overall survival was assessed. In vivo microdialysis was performed at the tumor site with administration of BHV-4157. Intratumoral immune cell populations were characterized with immunofluorescence and flow cytometry. RESULTS The BHV-4157 treatment arm demonstrated improved survival compared with the control arm (p < 0.0001). Microdialysis demonstrated that glutamate concentration in TME significantly decreased after BHV-4157 administration. Immunofluorescence and flow cytometry demonstrated increased CD4+ T cells and decreased Foxp3+ T cells in mice that received BHV-4157 treatment. No survival benefit was observed when CD4+ or CD8+ T cells were depleted in mice prior to BHV-4157 administration (p < 0.05). CONCLUSIONS In this study, the authors showed synergy between anti-PD-1 immunotherapy and glutamate modulation. The authors provide a possible mechanism for this synergistic benefit by showing that BHV-4157 relies on CD4+ and CD8+ T cells. This study sheds light on the role of excess glutamate in GBM and provides a basis for further exploring combinatorial approaches for the treatment of this disease.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 521-521
Author(s):  
Francesco Mazziotta ◽  
Luca Biavati ◽  
Rupkatha Mukhopadhyay ◽  
Hanna A. Knaus ◽  
Ivan M. Borrello ◽  
...  

Abstract Introduction The role of T cells in chemotherapy response and maintenance of remission in acute myeloid leukemia (AML) patients is not fully understood. In solid tumors and chronic infections, exhaustion is a multistep process ranging from less differentiated progenitor exhausted (Tpex) to intermediate and terminally exhausted T cells (Beltra et al. 2020). High frequencies of Tpex correlate with response to immune-checkpoint blockade in solid tumors (Miller et al. 2019). In AML, where the backbone of treatment is chemotherapy, the role of dysfunctional T-cell subsets has yet to be elucidated. Methods Serial bone marrow (BM) samples from 16 AML patients (10 complete responders (Res) and 6 non-responders (NonRes)) at diagnosis and at response assessment after induction chemotherapy and 12 healthy donors (HD) were analyzed by flow cytometry using a 13-color panel. Moreover, we performed single-cell RNA sequencing (scRNAseq) (10X Genomics) on BM samples from 2 HD and 5 AML patients (3 Res, 2 NonRes) at baseline and after chemotherapy. Subsequently, we used a scRNAseq-guided 26-color spectral flow cytometry panel and explored T-cell phenotypes on BM of 22 AML patients (12 Res and 10 NonRes). Custom-made R scripts were employed for high-dimensional flow cytometry and scRNAseq analysis. Results Initial flow-cytometry analysis showed a significant increase in BM PD1 +CD28 + CD8 + T cell subset (p&lt;0.01) in Res vs NonRes at baseline and post-chemotherapy (data not shown). To further investigate these results, we performed 5' VDJ scRNAseq and used gene signatures mapped in two dimensions via UMAP to annotate the T-cell clusters as naive, Tpex, T effector CX3CR1 + (Teff CX3CR1pos), Terminally exhausted 1 (Term_exh1) and Terminally exhausted 2 (Term_exh2) (Fig 1A). Of note, the two most upregulated genes in Tpex were GZMK and IL-7R. We then performed differential abundance analysis to investigate differences in terms of clusters' frequencies across the three conditions (Res, NonRes, HD). At both timepoints Res had an increased frequency of Tpex and Teff CX3CR1pos compared to NonRes. Conversely, Term_exh2 cells were more abundant in NonRes (Fig. 1B). Next, we measured the magnitude of clonal expansion in antigen-experienced CD8 + T cells in Res and NonRes generating an overlay of the position of clonally expanded cells projected onto the UMAP. The most clonally expanded subsets were Tpex and Teff CX3CR1pos in Res (Fig. 1C) and Term_exh2 in NonRes (Fig. 1D) revealing a strong relationship between abundance and clonal expansion of the CD8 + T-cell subsets. Our scRNAseq results were then confirmed at the protein level with spectral flow-cytometry. The FlowSOM algorithm identified a CD8 + GZMK +CD127 + subset to be increased at baseline in Res vs NonRes (Fig. 1E). Remarkably, this cluster was also characterized by the expression of TIGIT, PD1 and TCF-1. These results were subsequently reproduced by manual gating of the GZMK +CD127 + subset which was significantly enriched (p&lt;0.01) in Res vs NonRes (Fig. 1F). Of note, patients with a higher-than-median frequency of GZMK +CD127 +CD8 + T cells experienced significantly (p&lt;0.02) prolonged overall survival after therapy (Fig. 1G). Conclusion Improving our understanding of the immune microenvironment in AML is critical for the rational integration of novel treatment strategies that seek to increase the response rate and/or maintain remission. We identified GZMK +IL7R + CD8 + cells as a distinct entity in the early differentiated CD8 + memory T cell pool that is clonally expanded and more abundant in Res compared to NonRes. This subset has a stem-like signature and may be associated with longer in vivo CD8 + T cell persistence and long-term AML control. An in-depth functional characterization with in vitro experiments and in vivo mouse models is currently ongoing. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3404
Author(s):  
Elżbieta Rutkowska ◽  
Iwona Kwiecień ◽  
Joanna Bednarek ◽  
Rafał Sokołowski ◽  
Agata Raniszewska ◽  
...  

Sarcoidosis (SA) is a systemic granulomatous disorder of unknown etiology with lung and mediastinal lymph nodes (LNs) as the main location. T lymphocytes play important role in the formation of granulomas in SA, but still little is known about the role of maturation profile in the development of inflammatory changes. The aim of this study was to determine the CD4+ and CD8+ T cells maturation profile in LNs and in peripheral blood (PB) and its relation to disease severity expressed by diffusing capacity of the lung for carbon monoxide (DLCO). 29 patients with newly pulmonary SA were studied. Flow cytometry was used for cells evaluation in EBUS-TBNA samples. We observed lower median proportion of T lymphocytes, CD4+ T and CD8+ T cells in patients with DLCO< 80% than in patients with normal diffusion (DLCO > 80%). Patients with DLCO < 80% had lower median proportion of effector and higher median proportion of central memory CD4+ and CD8+ T cells than patients with DLCO > 80%. We reported for the first time that LNs CD4+ and CD8+ T cells maturation differs depending on the DLCO value in sarcoidosis. Lymphocytes profiles in LNs may reflect the immune status of patients with SA and can be analysed by flow cytometry of EBUS-TBNA samples.


Sign in / Sign up

Export Citation Format

Share Document