scholarly journals The PDE1A-PKCα Signaling Pathway Is Involved in the Upregulation of α-Smooth Muscle Actin by TGF-β1 in Adventitial Fibroblasts

2010 ◽  
Vol 47 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Hai-Yan Zhou ◽  
Wen-Dong Chen ◽  
Ding-Liang Zhu ◽  
Ling-Yun Wu ◽  
Jia Zhang ◽  
...  
1992 ◽  
Vol 103 (2) ◽  
pp. 521-529 ◽  
Author(s):  
E. Arciniegas ◽  
A.B. Sutton ◽  
T.D. Allen ◽  
A.M. Schor

Alpha-smooth muscle actin is considered a reliable marker for distinguishing between arterial smooth muscle and endothelial cells. Several authors have reported heterogeneity in the expression of this actin isoform in atherosclerotic lesions. Such heterogeneity appears to result from the presence of different smooth muscle cell phenotypes (contractile and synthetic) in these lesions. In the present study, we show that bovine aortic endothelial cells, which are characterised by the presence of Factor VIII-related antigen (FVIII) and by the absence of alpha-smooth muscle actin (alpha-SM actin) may be induced to express the latter when exposed to TGF-beta 1. FVIII was detected by immunofluorescence, alpha-SM actin was detected by immunofluorescence and immunoblotting. The number of cells expressing alpha-SM actin increased with time of incubation with TGF-beta 1, and this increase occurred concomitantly with a decrease in the expression of FVIII. Double immunofluorescence demonstrated the presence of cells that expressed both FVIII and alpha-SM actin after 5 days of incubation with TGF-beta 1. With longer incubation times (10-20 days) the loss of FVIII expression was complete and over 90% of the cells expressed alpha-SM actin. Ultrastructurally, cells in control cultures showed the typical features of endothelial cells. In the TGF-beta 1-treated cultures, cells which appeared indistinguishable from contractile and synthetic smooth muscle cells were observed. Withdrawal of TGF-beta 1 after 10 days incubation resulted in the re-appearance of polygonal cells which were FVIII-positive and alpha-SM actin-negative.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 33 (8) ◽  
pp. 622-627 ◽  
Author(s):  
M. Reza Ghassemifar ◽  
Roy W. Tarnuzzer ◽  
Nasser Chegini ◽  
Erkki Tarpila ◽  
Gregory S. Schultz ◽  
...  

2010 ◽  
Vol 80 (5) ◽  
pp. 912-918 ◽  
Author(s):  
Yao Meng ◽  
Xianglong Han ◽  
Lan Huang ◽  
Ding Bai ◽  
Hongyou Yu ◽  
...  

2018 ◽  
Vol 39 (11) ◽  
pp. 1191-1199 ◽  
Author(s):  
Caroline A Glicksman ◽  
Michel A Danino ◽  
Johnny I Efanov ◽  
Arij El Khatib ◽  
Monica Nelea

Abstract Background Although increasingly reported in the literature, most plastic surgeons cannot define the etiology of double capsules. Often an incidental finding at implant exchange, double capsules are frequently associated with macrotextured devices. Several mechanisms have been proposed, including at the forefront that shearing causes a delamination of the periprosthetic capsule into a double capsule. Objectives This study was designed to confirm the hypothesis that mechanical forces are involved in formation of double capsules by histological analysis. Methods A prospective analysis of consecutive implants with double capsules removed over 2 years was performed. Data collected at the time of surgery included Baker classification, reason for explant, implant manufacturer and style, and any presence of a seroma associated with the capsule. Specimens were sent for analysis by histology utilizing hematoxylin and eosin and alpha-smooth muscle actin staining techniques. Results Eight double capsules were collected for specimen analysis. All capsules demonstrated evidence of granulation tissue, alpha-smooth muscle actin positive myofibroblasts, and folds with embedded texture. Fibrosis surrounded weak areas with presence of layering and splitting, creating a potential space that is prone to separation. Tears and folds from granulomatous reaction are also present within the outer layer of the double capsule, which can only be explained by a mechanical shearing force as a pathogenic mechanism. Conclusions Understanding the pathogenesis of double capsules may allow plastic surgeons to refine their indications for macrotextured implants while providing guidance to patients on avoidance of activities that produce shear-forces. The findings support the hypothesis that shearing forces delaminate the capsule into 2 separate distinct capsules. Level of Evidence: 5


Sign in / Sign up

Export Citation Format

Share Document