Evaluation of the Effect of Pollution and Fungal Disease on Pinus radiata Pollen Allergenicity

2013 ◽  
Vol 160 (3) ◽  
pp. 241-250 ◽  
Author(s):  
María Victoria García-Gallardo ◽  
Jaime Algorta ◽  
Natividad Longo ◽  
Santiago Espinel ◽  
Ana Aragones ◽  
...  
EDIS ◽  
2017 ◽  
Vol 2017 (4) ◽  
Author(s):  
Keith W. Wynn ◽  
Nicholas S. Dufault ◽  
Rebecca L. Barocco

This ten-page fact sheet includes a summary of various fungicide spray programs for fungal disease control of early leaf spot, late leaf spot, and white mold/stem rot of peanut in 2012-2016 on-farm trials in Hamilton County. Written by K.W. Wynn, N.S. Dufault, and R.L. Barocco and published by the Plant Pathology Department.http://edis.ifas.ufl.edu/pp334


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. A. FIRDOUSI

During the survey of the forest fungal disease, of Jalgaon district, two severe leaf spot diseases on Lannae coromandelica and ( Ougenia dalbergioides (Papilionaceae) were observed in Jalgaon, forest during July to September 2016-17. The casual organism was identified as Stigmina lanneae and Phomopsis sp. respectively1-4,7. These are first report from Jalgaon and Maharashtra state.


Author(s):  
G.G. Cossens ◽  
M.F. Hawke

During the first 20 years of a Pinus radiata tree rotation, tree growth and pasture yield were assessed under a range of tree spacings at Invermay and Akatore, two coastal sites in Eastern Otago. Pasture yield in association with trees thinned to 100 stems per hectare (sph) was comparable to that from open pasture up to a tree age of 12 years. By the 19th year, however, pasture production declined to 63% of open pasture yield at Invermay and to 42% at Akatore. At 200 and 400 sph at Akatore, pasture yield was similar to that from open pasture at tree age 12 years but declined to 27% and 0% of open pasture yield respectively by year 20. At both Invermay and Akatore, the ryegrass and clover content of open pasture was relatively constant throughout the term of the trial. However, both the ryegrass and clover content of pasture beneath trees began to decline by tree age 12 years with a very rapid decline at Akatore in the number of pasture species at 200 sph by the 19th year. No pasture remained at 400 sph, after 19 years. Livestock carrying capacity with sheep on tree treatments at Invermay decreased from 100% of open pasture at year 6 to 60% by year 10. At Akatore, livestock carrying capacity averaged over the 20-year life of the trial was 4.1 stock units per hectare with a maximum of 8.1 stock units at a tree age of 8 years. Tree growth at both sites was similar, averaging between 1 and 1.1 m/year in height over 20 years, with trees at Invermay at 100 sph averaging 9% greater height and diameter growth than at Akatore. Increasing tree stocking from 100 to 200 to 400 sph at Akatore, resulted in increased tree height, but decreased diameter at breast height. A comparison of the East Otago trees with those in a similar trial at Tikitere (Rotorua) 900 km further north indicated that the southern trees were about 6 years later in their growth pattern by tree age 20 years. On both sites, soil pH tended to be lower in the presence of trees and was significantly lower than in open pasture by year 20. The results and comparisons with the Tikitere data suggest that, in an integrated agroforestry regime, there will be livestock grazing under the trees further into the tree rotation in Otago than in North Island sites. However, slower tree growth would result in a longer rotation time to harvest. Current recommendations to farmers are to plant trees on the less productive areas of the farm and adopt a tree stocking rate which fully utilises the site. Keywords: agroforestry, livestock, pasture, Pinus radiata, soil pH, tree stocking


Author(s):  
Е. А. Dolmatov ◽  
Т. А. Khrykina

Development of low-growing varieties is one of the prioritized directions in groups selection. Solution of excessive growth in the selection can be solved in today’s conditions by two means: on a polygenic and on a monogenic level. Up until recently such work was performed by research institutes of horticulture in the U.S.S.R. and Russian Federation only on the polygenic level. The analysis is performed for the data of 17 summer studies on the development of complex donors of monogenic determined dwarfness (gene D), high winter hardiness, group fungal disease resistance (scab, leaf spot and Septoria blight) and bright red coloration of pear fruits (gene C). On the first stage of these studies the issue of the development of population of hybrid dwarf types with high adaptive potential in the conditions of the Central Black Earth region of Russia was solved based on a hybridization of the donors of high winter hardiness and fungal disease resistance with the donors of monogenic determined dwarfness which were the descendants of 4th generation of the NainVert variety. As a result, several complex donors were selected. Its use in long-term pear selection programs would make sorting process possible on earlier stages of the ontogenesis and thanks to that would make it possible to halve the size of hybrid funds. Brief description of the complex donors is given.


Author(s):  
Alberto García-Iruela ◽  
Luis García Esteban ◽  
Francisco García Fernández ◽  
Paloma de Palacios ◽  
Alejandro B. Rodriguez-Navarro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document