scholarly journals Effects of Synthetic Neural Adhesion Molecule Mimetic Peptides and Related Proteins on the Cardiomyogenic Differentiation of Mouse Embryonic Stem Cells

2015 ◽  
Vol 35 (6) ◽  
pp. 2437-2450 ◽  
Author(s):  
Ruodan Xu ◽  
Sureshkumar Perumal Srinivasan ◽  
Poornima Sureshkumar ◽  
Erastus Nembu Nembo ◽  
Christoph Schäfer ◽  
...  

Background/Aims: Pluripotent stem cells differentiating into cardiomyocyte-like cells in an appropriate cellular environment have attracted significant attention, given the potential use of such cells for regenerative medicine. However, the precise mechanisms of lineage specification of pluripotent stem cells are still largely to be explored. Identifying the role of various small synthetic peptides involved in cardiomyogenesis may provide new insights into pathways promoting cardiomyogenesis. Methods: In the present study, using a transgenic murine embryonic stem (ES) cell lineage expressing enhanced green fluorescent protein (EGFP) under the control of α-myosin heavy chain (α-MHC) promoter (pαMHC-EGFP), we investigated the cardiomyogenic effects of 7 synthetic peptides (Betrofin3, FGLs, FGLL, hNgf_C2, EnkaminE, Plannexin and C3) on cardiac differentiation. The expression of several cardiac-specific markers was determined by RT-PCR whereas the structural and functional properties of derived cardiomyocytes were examined by immunofluorescence and electrophysiology, respectively. Results: The results revealed that Betrofin3, an agonist of brain derived neurotrophic factor (BDNF) peptide exerted the most striking pro-cardiomyogenic effect on ES cells. We found that BDNF receptor, TrkB expression was up-regulated during differentiation. Treatment of differentiating cells with Betrofin3 between days 3 and 5 enhanced the expression of cardiac-specific markers and improved cardiomyocyte differentiation and functionality as revealed by genes regulation, flow cytometry and patch clamp analysis. Thus Betrofin3 may exert its cardiomyogenic effects on ES cells via TrkB receptor. Conclusion: Taken together, the results suggest that Betrofin3 modulates BDNF signaling with positive cardiomyogenic effect in stage and dose-dependent manner providing an effective strategy to increase ES cell-based generation of cardiomyocytes and offer a novel therapeutic approach to cardiac pathologies where BDNF levels are impaired.

1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


2006 ◽  
Vol 18 (8) ◽  
pp. 839 ◽  
Author(s):  
Steven L. Stice ◽  
Nolan L. Boyd ◽  
Sujoy K. Dhara ◽  
Brian A. Gerwe ◽  
David W. Machacek ◽  
...  

Human and non-human primate embryonic stem (ES) cells are invaluable resources for developmental studies, pharmaceutical research and a better understanding of human disease and replacement therapies. In 1998, subsequent to the establishment of the first monkey ES cell line in 1995, the first human ES cell line was developed. Later, three of the National Institute of Health (NIH) lines (BG01, BG02 and BG03) were derived from embryos that would have been discarded because of their poor quality. A major challenge to research in this area is maintaining the unique characteristics and a normal karyotype in the NIH-registered human ES cell lines. A normal karyotype can be maintained under certain culture conditions. In addition, a major goal in stem cell research is to direct ES cells towards a limited cell fate, with research progressing towards the derivation of a variety of cell types. We and others have built on findings in vertebrate (frog, chicken and mouse) neural development and from mouse ES cell research to derive neural stem cells from human ES cells. We have directed these derived human neural stem cells to differentiate into motoneurons using a combination of developmental cues (growth factors) that are spatially and temporally defined. These and other human ES cell derivatives will be used to screen new compounds and develop innovative cell therapies for degenerative diseases.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1265-1275 ◽  
Author(s):  
Abby L. Olsen ◽  
David L. Stachura ◽  
Mitchell J. Weiss

Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases.


2021 ◽  
pp. 75-89
Author(s):  
Jonathan Slack

‘Tissue-specific stem cells’ explores tissue-specific stem cells, which are stem cells found in the postnatal body that are responsible for tissue renewal or for repair following damage. Tissue-specific stem cells share with pluripotent stem cells the same ability to persist indefinitely as a population, to reproduce themselves, and to generate differentiated progeny cells. However, tissue-specific stem cells share few molecular characteristics with embryonic stem (ES) cells or induced pluripotent stem cells (iPS cells), such as expression of specific transcription factors or cell surface molecules. Only renewal tissues have stem cells in the sense of a special population of cells that reproduce themselves and continue to generate differentiated progeny.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3605-3605
Author(s):  
Stefan Irion ◽  
Herve Luche ◽  
Hans J. Fehling ◽  
Gordon Keller

Abstract Hematopoiesis is initiated at several independent sites in the mouse embryo. The earliest site, the yolk sac, supports the development of a restricted hematopoietic program that consists of the production of primitive erythrocytes and macrophages, as well as progenitors of the definitive erythroid, megakaryocytic and mast cell lineages. Lymphoid cells are not generated during the early phase of yolk sac hematopoiesis. Following the onset of yolk sac hematopoiesis, a second hematopoietic program is initiated in a region known as the para-aortic splanchnopleura (P-Sp). The hematopoietic system generated in the P-Sp contains hematopoietic stem cells as well as progenitors of the lymphoid, myeloid and definitive erythroid lineages. The P-Sp does not give rise to primitive erythrocytes. The differentiation of embryonic stem (ES) cells in culture offers an outstanding system for modeling early hematopoietic development and for investigating the mechanisms regulating lineage commitment. While a number of different studies have provided convincing evidence that the ES cell model can recapitulate yolk sac hematopoiesis, it is unclear if the equivalent of the P-Sp hematopoietic system is established in these differentiation cultures. To address this question we induced different hematopoietic populations with a combination of activin A and BMP2 in serum-free media using an ES cell line carrying the GFP cDNA targeted to the mesoderm gene brachyury (GFP-Bry ES cells). When induced with these factors, the GFP-Bry cells generated two distinct populations with respect to expression of GFP-Bry and Flk-1, the receptor for vascular endothelial growth factor. The first expressed GFP-Bry, but no Flk-1 (GFP-Bry+/Flk-1−), whereas the second expressed both markers (GFP-Bry+/Flk-1+). If the GFP-Bry+/Flk-1− cells were allowed to reaggregate and cultured for an additional 24 hours, they generated a second GFP-Bry+/Flk-1+ population. Analysis of these two distinct Flk-1 populations revealed that both contained hematopoietic progenitors, but that their potential differed. The first Flk-1 population contained BL-CFC, the in vitro equivalent of the hemangioblast as well primitive erythroid and macrophage progenitors. It displayed limited potential to generate B and T lymphocytes when cultured on the OP9 and OP9-DL1 cells respectively. In contrast, the second Flk-1 population did generate B cell and T cells following coculture with the OP9 and OP9-DL1 stromal cells. B cell development was monitored by expression of B220, CD19 and surface IgM whereas T cells were identified by expression of CD4, CD8 and CD3. In addition to lymphoid progenitors, the second Flk-1 population contained multipotent, macrophage and definitive erythroid progenitors. It did not, however, contain significant numbers of BL-CFC or primitive erythroid progenitors. Taken together, these findings demonstrate that is it possible to generate two distinct hematopoietic populations in defined culture conditions. The developmental potential of these populations suggests that they could represent the equivalent of the yolk sac and P-Sp hematopoietic programs.


Author(s):  
Su-Chun Zhang ◽  
Xue-Jun Li ◽  
M Austin Johnson ◽  
Matthew T Pankratz

Cell therapy has been perceived as the main or ultimate goal of human embryonic stem (ES) cell research. Where are we now and how are we going to get there? There has been rapid success in devising in vitro protocols for differentiating human ES cells to neuroepithelial cells. Progress has also been made to guide these neural precursors further to more specialized neural cells such as spinal motor neurons and dopamine-producing neurons. However, some of the in vitro produced neuronal types such as dopamine neurons do not possess all the phenotypes of their in vivo counterparts, which may contribute to the limited success of these cells in repairing injured or diseased brain and spinal cord in animal models. Hence, efficient generation of neural subtypes with correct phenotypes remains a challenge, although major hurdles still lie ahead in applying the human ES cell-derived neural cells clinically. We propose that careful studies on neural differentiation from human ES cells may provide more immediate answers to clinically relevant problems, such as drug discovery, mechanisms of disease and stimulation of endogenous stem cells.


2009 ◽  
Vol 390 (10) ◽  
Author(s):  
Komal Loya ◽  
Reto Eggenschwiler ◽  
Kinarm Ko ◽  
Malte Sgodda ◽  
Francoise André ◽  
...  

Abstract In regenerative medicine pluripotent stem cells are considered to be a valuable self-renewing source for therapeutic cell transplantations, given that a functional organ-specific phenotype can be acquired by in vitro differentiation protocols. Furthermore, derivatives of pluripotent stem cells that mimic fetal progenitor stages could serve as an important tool to analyze organ development with in vitro approaches. Because of ethical issues regarding the generation of human embryonic stem (ES) cells, other sources for pluripotent stem cells are intensively studied. Like in less developed vertebrates, pluripotent stem cells can be generated from the female germline even in mammals, via parthenogenetic activation of oocytes. Recently, testis-derived pluripotent stem cells were derived from the male germline. Therefore, we compared two different hepatic differentiation approaches and analyzed the generation of definitive endoderm progenitor cells and their further maturation into a hepatic phenotype using murine parthenogenetic ES cells, germline-derived pluripotent stem cells, and ES cells. Applying quantitative RT-PCR, both germline-derived pluripotent cell lines show similar differentiation capabilities as normal murine ES cells and can be considered an alternative source for pluripotent stem cells in regenerative medicine.


2014 ◽  
Vol 8 (1) ◽  
pp. 5-10
Author(s):  
Song Hua ◽  
Henry Chung ◽  
Kuldip Sidhu

AbstractBackground: Therapeutic cloning is the combination of somatic cell nuclear transfer (SCNT) and embryonic stem cell (ES) techniques to create specific ES cells that match those of a patient. Because ES cells derived by nuclear transfer (SCNT ES cells) are genetically identical to the donor, it will not generate rejection by the host’s immune system and thus therapeutically may be more acceptable. Induced pluripotent stem cells (iPS) are a type of pluripotent stem cell artificially derived from an adult somatic cell by inducing a forced expression of a set of specific pluripotent genes. In the past few years, rapid progress in reprogramming and iPS technology has been made, and it seems to shadow any progress made in SCNT programs.Objective: This review compares the application perspective of SCNT with that of iPS in regenerative medicine.Methods:We conducted a literature search using the MEDLINE (PubMed), Wiley InterScience, Springer, EBSCO, and Annual Reviews databases using the keywords “iPS”, “ES”, “SCNT” “induced pluripotent stem cells”, “embryonic stem cells”, “therapeutic cloning”, “regenerative medicine”, and “somatic cell nuclear transfer”. Only articles published in English were included in this review.Results: These two methods both have advantages and disadvantages. Nevertheless, by using SCNT to generate patient-specific cell lines, it eliminates complications by avoiding the use of viral vectors during iPS generation. Success in in vitro matured eggs from aged women and even differentiation of oocytes from germ stem cells will further enhance the application of SCNT in regenerative medicine.Conclusion: Human SCNT may be an appropriate mean of generating patient stem cell lines for clinical therapy in the near future.


2019 ◽  
Vol 14 (3) ◽  
pp. 278-289 ◽  
Author(s):  
Maryam Farzaneh ◽  
Masoumeh Alishahi ◽  
Zahra Derakhshan ◽  
Neda H. Sarani ◽  
Farnoosh Attari ◽  
...  

The discovery of small non-coding RNAs began an interesting era in cellular and molecular biology. To date, miRNAs are the best recognized non-coding RNAs for maintenance and differentiation of pluripotent stem cells including embryonic stem cells (ES), induced pluripotent stem cells (iPSC), and cancer stem cells. ES cells are defined by their ability to self-renew, teratoma formation, and to produce numerous types of differentiated cells. Dual capacity of ES cells for self-renewal and differentiation is controlled by specific interaction with the neighboring cells and intrinsic signaling pathways from the level of transcription to translation. The ES cells have been the suitable model for evaluating the function of non-coding RNAs and in specific miRNAs. So far, the general function of the miRNAs in ES cells has been assessed in mammalian and non-mammalian stem cells. Nowadays, the evolution of sequencing technology led to the discovery of numerous miRNAs in human and mouse ES cells that their expression levels significantly changes during proliferation and differentiation. Several miRNAs have been identified in ectoderm, mesoderm, and endoderm cells, as well. This review would focus on recent knowledge about the expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. It also describes that miRNAs might have essential roles in orchestrating the Waddington's landscape structure during development.


2019 ◽  
Vol 14 (6) ◽  
pp. 466-473 ◽  
Author(s):  
Maryam Farzaneh ◽  
Zahra Derakhshan ◽  
Jamal Hallajzadeh ◽  
Neda Hosseini Sarani ◽  
Armin Nejabatdoust ◽  
...  

Stem cells are unspecialized cells and excellent model in developmental biology and a promising approach to the treatment of disease and injury. In the last 30 years, pluripotent embryonic stem (ES) cells were established from murine and primate sources, and display indefinite replicative potential and the ability to differentiate to all three embryonic germ layers. Despite large efforts in many aspects of rodent and non-rodent pluripotent stem cell culture, a number of diverse challenges remain. Natural and synthetic small molecules (SMs) strategy has the potential to overcome these hurdles. Small molecules are typically fast and reversible that target specific signaling pathways, epigenetic processes and other cellular processes. Inhibition of the transforming growth factor-β (TGF-β/Smad) and fibroblast growth factor 4 (FGF4)/ERK signaling pathways by SB431542 and PD0325901 small molecules, respectively, known as R2i, enhances the efficiency of mouse, rat, and chicken pluripotent stem cells passaging from different genetic backgrounds. Therefore, the application of SM inhibitors of TGF-β and ERK1/2 with leukemia inhibitory factor (LIF) allows the cultivation of pluripotent stem cells in a chemically defined condition. In this review, we discuss recently emerging evidence that dual inhibition of TGF-β and FGF signaling pathways plays an important role in regulating pluripotency in both rodent and non-rodent pluripotent stem cells.


Sign in / Sign up

Export Citation Format

Share Document