Serum Free Induction of a Lympho-Hematopoietic Precursor Population from Murine Embryonic Stem Cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3605-3605
Author(s):  
Stefan Irion ◽  
Herve Luche ◽  
Hans J. Fehling ◽  
Gordon Keller

Abstract Hematopoiesis is initiated at several independent sites in the mouse embryo. The earliest site, the yolk sac, supports the development of a restricted hematopoietic program that consists of the production of primitive erythrocytes and macrophages, as well as progenitors of the definitive erythroid, megakaryocytic and mast cell lineages. Lymphoid cells are not generated during the early phase of yolk sac hematopoiesis. Following the onset of yolk sac hematopoiesis, a second hematopoietic program is initiated in a region known as the para-aortic splanchnopleura (P-Sp). The hematopoietic system generated in the P-Sp contains hematopoietic stem cells as well as progenitors of the lymphoid, myeloid and definitive erythroid lineages. The P-Sp does not give rise to primitive erythrocytes. The differentiation of embryonic stem (ES) cells in culture offers an outstanding system for modeling early hematopoietic development and for investigating the mechanisms regulating lineage commitment. While a number of different studies have provided convincing evidence that the ES cell model can recapitulate yolk sac hematopoiesis, it is unclear if the equivalent of the P-Sp hematopoietic system is established in these differentiation cultures. To address this question we induced different hematopoietic populations with a combination of activin A and BMP2 in serum-free media using an ES cell line carrying the GFP cDNA targeted to the mesoderm gene brachyury (GFP-Bry ES cells). When induced with these factors, the GFP-Bry cells generated two distinct populations with respect to expression of GFP-Bry and Flk-1, the receptor for vascular endothelial growth factor. The first expressed GFP-Bry, but no Flk-1 (GFP-Bry+/Flk-1−), whereas the second expressed both markers (GFP-Bry+/Flk-1+). If the GFP-Bry+/Flk-1− cells were allowed to reaggregate and cultured for an additional 24 hours, they generated a second GFP-Bry+/Flk-1+ population. Analysis of these two distinct Flk-1 populations revealed that both contained hematopoietic progenitors, but that their potential differed. The first Flk-1 population contained BL-CFC, the in vitro equivalent of the hemangioblast as well primitive erythroid and macrophage progenitors. It displayed limited potential to generate B and T lymphocytes when cultured on the OP9 and OP9-DL1 cells respectively. In contrast, the second Flk-1 population did generate B cell and T cells following coculture with the OP9 and OP9-DL1 stromal cells. B cell development was monitored by expression of B220, CD19 and surface IgM whereas T cells were identified by expression of CD4, CD8 and CD3. In addition to lymphoid progenitors, the second Flk-1 population contained multipotent, macrophage and definitive erythroid progenitors. It did not, however, contain significant numbers of BL-CFC or primitive erythroid progenitors. Taken together, these findings demonstrate that is it possible to generate two distinct hematopoietic populations in defined culture conditions. The developmental potential of these populations suggests that they could represent the equivalent of the yolk sac and P-Sp hematopoietic programs.

1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


2006 ◽  
Vol 18 (8) ◽  
pp. 839 ◽  
Author(s):  
Steven L. Stice ◽  
Nolan L. Boyd ◽  
Sujoy K. Dhara ◽  
Brian A. Gerwe ◽  
David W. Machacek ◽  
...  

Human and non-human primate embryonic stem (ES) cells are invaluable resources for developmental studies, pharmaceutical research and a better understanding of human disease and replacement therapies. In 1998, subsequent to the establishment of the first monkey ES cell line in 1995, the first human ES cell line was developed. Later, three of the National Institute of Health (NIH) lines (BG01, BG02 and BG03) were derived from embryos that would have been discarded because of their poor quality. A major challenge to research in this area is maintaining the unique characteristics and a normal karyotype in the NIH-registered human ES cell lines. A normal karyotype can be maintained under certain culture conditions. In addition, a major goal in stem cell research is to direct ES cells towards a limited cell fate, with research progressing towards the derivation of a variety of cell types. We and others have built on findings in vertebrate (frog, chicken and mouse) neural development and from mouse ES cell research to derive neural stem cells from human ES cells. We have directed these derived human neural stem cells to differentiate into motoneurons using a combination of developmental cues (growth factors) that are spatially and temporally defined. These and other human ES cell derivatives will be used to screen new compounds and develop innovative cell therapies for degenerative diseases.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1265-1275 ◽  
Author(s):  
Abby L. Olsen ◽  
David L. Stachura ◽  
Mitchell J. Weiss

Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1207-1213 ◽  
Author(s):  
Isao Hamaguchi ◽  
Tohru Morisada ◽  
Masaki Azuma ◽  
Kyoko Murakami ◽  
Madoka Kuramitsu ◽  
...  

AbstractTie2 is a receptor-type tyrosine kinase expressed on hematopoietic stem cells and endothelial cells. We used cultured embryonic stem (ES) cells to determine the function of Tie2 during early vascular development and hematopoiesis. Upon differentiation, the ES cell–derived Tie2+Flk1+ fraction was enriched for hematopoietic and endothelial progenitor cells. To investigate lymphatic differentiation, we used a monoclonal antibody against LYVE-1 and found that LYVE-1+ cells derived from Tie2+Flk1+ cells possessed various characteristics of lymphatic endothelial cells. To determine whether Tie2 played a role in this process, we analyzed differentiation of Tie2-/- ES cells. Although the initial numbers of LYVE-1+ and PECAM-1+ cells derived from Tie2-/- cells did not vary significantly, the number of both decreased dramatically upon extended culturing. Such decreases were rescued by treatment with a caspase inhibitor, suggesting that reductions were due to apoptosis as a consequence of a lack of Tie2 signaling. Interestingly, Tie2-/- ES cells did not show measurable defects in development of the hematopoietic system, suggesting that Tie2 is not essential for hematopoietic cell development.


Blood ◽  
2007 ◽  
Vol 110 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Yosuke Tanaka ◽  
Takumi Era ◽  
Shin-ichi Nishikawa ◽  
Shin Kawamata

Nanog is a key molecule involved in the maintenance of the self-renewal of undifferentiated embryonic stem (ES) cells. In this work we investigate whether Nanog can enhance self-renewal in hematopoietic stem cells. Contrary to our expectation, no positive effect of Nanog transduction was detected in bone marrow reconstitution assays. However, recipients of Nanog-transduced (Nanog) hematopoietic stem cells (HSCs) invariantly develop a unique disorder typified by an atrophic thymus occupied by Nanog-expressing γδT-cell receptor–positive (TCR+) cells (Nanog T cells). All thymi are eventually occupied by Nanog T cells with CD25+CD44+ surface phenotype that home selectively to the thymus on transfer and suppress normal thymocyte development, which is partly ascribed to destruction of the microenvironment in the thymus cortex. Moreover, this initial disorder invariantly develops to a lymphoproliferative disorder, in which Nanog T cells undergo unlimited proliferation in the peripheral lymphoid tissues and eventually kill the host. This invariable end result suggests that Nanog is a candidate oncogene for γδT-cell malignancy.


Author(s):  
Su-Chun Zhang ◽  
Xue-Jun Li ◽  
M Austin Johnson ◽  
Matthew T Pankratz

Cell therapy has been perceived as the main or ultimate goal of human embryonic stem (ES) cell research. Where are we now and how are we going to get there? There has been rapid success in devising in vitro protocols for differentiating human ES cells to neuroepithelial cells. Progress has also been made to guide these neural precursors further to more specialized neural cells such as spinal motor neurons and dopamine-producing neurons. However, some of the in vitro produced neuronal types such as dopamine neurons do not possess all the phenotypes of their in vivo counterparts, which may contribute to the limited success of these cells in repairing injured or diseased brain and spinal cord in animal models. Hence, efficient generation of neural subtypes with correct phenotypes remains a challenge, although major hurdles still lie ahead in applying the human ES cell-derived neural cells clinically. We propose that careful studies on neural differentiation from human ES cells may provide more immediate answers to clinically relevant problems, such as drug discovery, mechanisms of disease and stimulation of endogenous stem cells.


Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1207-1213 ◽  
Author(s):  
Takumi Era ◽  
Tomomi Takahashi ◽  
Katsuya Sakai ◽  
Kazuo Kawamura ◽  
Toru Nakano

Abstract Thrombopoietin (TPO), the ligand for the receptor proto-oncogene c-Mpl, has been cloned and shown to be the critical regulator of proliferation and differentiation of megakaryocytic lineage. Initially, TPO was not considered to have the activity on hematopoietic lineages other than megakaryocytes. Recently, however, TPO was reported to enhance the in vitro erythroid colony formation from human bone marrow (BM) CD34+ progenitors or from mouse BM cells in combination with other cytokines. We examined the effects of TPO on the colony formation of hematopoietic progenitors in mouse yolk sac. TPO remarkably enhanced proliferation and differentiation of erythroid-lineage cells in the presence of erythropoietin (Epo). This effect was observed even in the absence of Epo. Compared with adult BM, yolk sac turned out to have relatively abundant erythroid and erythro-megakaryocytic progenitors, which responded to TPO and Epo stimulation. TPO similarly stimulated erythroid colony formation from in vitro differentiation-induced mouse embryonic stem (ES) cells whose hematopoietic differentiation status was similar to that of yolk sac. These findings help to understand the biology of hematopoietic progenitors of the early phase of hematopoiesis. Yolk sac cells or in vitro differentiation-induced ES cells would be good sources to analyze the TPO function on erythropoiesis.


2007 ◽  
Vol 30 (4) ◽  
pp. 98
Author(s):  
Douglas Wu ◽  
Kathryn Wood

Background: Although clinical transplantation has had enormous impact on the treatment of premature organ failure, shortage of donor organs continues to be a crucial limiting factor. Embryonic stem cells represent an attractive potential source of replacement tissue because of their inherent pluripotentiality and ability to self-renew. However, before any ES cell-based cellular replacement strategies can be considered, many issues must be addressed. Among these is an evaluation of the potential immune response elicited by any ES cell graft. Because ES cells express very low levels of MHC class I and no MHC class II, their immunogenicity has been questioned. Here we utilize a BM3 TCR transgenic model to analyze the adaptive immune response against an ES cell graft in vivo. Methods: BM3 CD8 TCR-tg T cells (H2K background) specific for the MHC class I molecule H2Kb were labelled with CFSE and adoptively transferred into CBA rag recipients. The following day, ES cells derived from a CBA, B6, or CBK background were implanted beneath the kidney capsule of adoptively transferred mice. Response of the CD8 T cells was measured via CSFE division profiling and graft infiltration. Results: CFSE division profile of naïve BM3 CD8 T cells was unaltered by the presence of either a syngeneic or an allogeneic ES cell graft. These naïve cells were also unable to recognize and infiltrate either a syngeneic or allogeneic ES cell graft on days 5 and 10 post-implantation, despite strong expression of the MHC class I molecule H2Kb by engrafted allogeneic ES cells. On the other hand, H2Kb+ islets begun to be infiltrated by day 5, and were obliterated by a vigorous allogeneic response by day 10. When H2Kb+ islets were implanted into the same kidney as allogeneic ES cells (opposite poles), islet grafts were rapidly infiltrated by CD4 and CD8 T cells and destroyed, but ES cell grafts exhibited markedly reduced cellular infiltrate. In contrast to naïve BM3 CD8 T cells, however, activated cells recognized and mounted an aggressive cytotoxic response against an allogeneic ES cell graft which could be detected by day 6 and resulted in complete graft destruction by day 10. Conclusions: Under certain circumstances, an ES cell graft may have reduced immunogenicity as compared with other conventional tissue or solid organ allografts. This may be due to their lack of passenger APC, which may in turn cripple their ability to elicit a robust allogeneic response via the direct pathway of allorecognition. However, because of their strong upregulation of allogeneic MHC class I molecules after transplantation, they are still likely to elicit a significant rejection response when transplanted into recipients replete with both CD4 and CD8 T cells.


2015 ◽  
Vol 35 (6) ◽  
pp. 2437-2450 ◽  
Author(s):  
Ruodan Xu ◽  
Sureshkumar Perumal Srinivasan ◽  
Poornima Sureshkumar ◽  
Erastus Nembu Nembo ◽  
Christoph Schäfer ◽  
...  

Background/Aims: Pluripotent stem cells differentiating into cardiomyocyte-like cells in an appropriate cellular environment have attracted significant attention, given the potential use of such cells for regenerative medicine. However, the precise mechanisms of lineage specification of pluripotent stem cells are still largely to be explored. Identifying the role of various small synthetic peptides involved in cardiomyogenesis may provide new insights into pathways promoting cardiomyogenesis. Methods: In the present study, using a transgenic murine embryonic stem (ES) cell lineage expressing enhanced green fluorescent protein (EGFP) under the control of α-myosin heavy chain (α-MHC) promoter (pαMHC-EGFP), we investigated the cardiomyogenic effects of 7 synthetic peptides (Betrofin3, FGLs, FGLL, hNgf_C2, EnkaminE, Plannexin and C3) on cardiac differentiation. The expression of several cardiac-specific markers was determined by RT-PCR whereas the structural and functional properties of derived cardiomyocytes were examined by immunofluorescence and electrophysiology, respectively. Results: The results revealed that Betrofin3, an agonist of brain derived neurotrophic factor (BDNF) peptide exerted the most striking pro-cardiomyogenic effect on ES cells. We found that BDNF receptor, TrkB expression was up-regulated during differentiation. Treatment of differentiating cells with Betrofin3 between days 3 and 5 enhanced the expression of cardiac-specific markers and improved cardiomyocyte differentiation and functionality as revealed by genes regulation, flow cytometry and patch clamp analysis. Thus Betrofin3 may exert its cardiomyogenic effects on ES cells via TrkB receptor. Conclusion: Taken together, the results suggest that Betrofin3 modulates BDNF signaling with positive cardiomyogenic effect in stage and dose-dependent manner providing an effective strategy to increase ES cell-based generation of cardiomyocytes and offer a novel therapeutic approach to cardiac pathologies where BDNF levels are impaired.


2009 ◽  
Vol 18 (5-6) ◽  
pp. 581-590 ◽  
Author(s):  
Koichi Oishi ◽  
Hirofumi Noguchi ◽  
Hiroshi Yukawa ◽  
Shuji Hayashi

Somatic stem cells can be isolated from a variety of sources. Although some studies have suggested that somatic stem cells may represent a cell population that is very similar to embryonic stem (ES) cells, it remains unclear whether somatic stem cells retain the potential to differentiate into any cell type derived from the three germ layers. In this study, we investigated the transdifferentiation potential of somatic stem cells using adipose tissue-derived stem/progenitor cells (ASCs; mesodermal stem cells) and pancreatic stem cells (endodermal stem cells). Previous reports from other groups describe the protocol that has been used to differentiate ASCs or mesenchymal stem cells (MSCs) in bone marrow into insulin-producing cells. Induction 1: ASCs were cultured for 3 days in ultra-low attachment plates under serum-free conditions. Induction 2: ASCs were cultured for 24 h with L-DMEM, and reinduced with serum-free H-DMEM for another 10 h. Unlike previous reports, we did not get ASCs to express any pancreas-specific genes, including insulin-1 or insulin-2. Pancreatic stem cells were induced to differentiate into adipo/osteogenic by the following protocols. Induction protocol 1: ACSs were cultured for 7 days with medium containing indometacin, dexamethasone, hydrocortisone, and insulin for adipogenic differentiation. Induction protocol 2: The cells were cultured for 7 days with medium containing dexamethasone, ascorbate-2-phosphate, and β-glycerophosphate for osteogenic differentiation. Although these approaches have been widely used for adipo/osteogenic differentiation from MSCs, adipo/osteogenic differentiation from pancreatic stem cells was not observed. These data suggest that it is not easy for somatic stem cells to transdifferentiate into other germ cell types, at least, under these conditions.


Sign in / Sign up

Export Citation Format

Share Document