scholarly journals Early Social Experience Affects Neural Activity to Affiliative Facial Gestures in Newborn Nonhuman Primates

2015 ◽  
Vol 37 (3) ◽  
pp. 243-252 ◽  
Author(s):  
Ross E. Vanderwert ◽  
Elizabeth A. Simpson ◽  
Annika Paukner ◽  
Stephen J. Suomi ◽  
Nathan A. Fox ◽  
...  

A fundamental issue in cognitive neuroscience is how the brain encodes the actions and intentions of others. The discovery of an action-production-perception mechanism underpinning such a capacity advanced our knowledge of how these processes occur; however, no study has examined how the early postnatal environment may shape action-production-perception. Here, we examined the effects of social experience on action-production-perception in 3-day-old rhesus macaques that were raised either with or without their biological mothers. We measured the neonatal imitation skills and brain electrical activity responses, while infants produced and observed facial gestures. We hypothesized that early social experiences may shape brain activity, as assessed via electroencephalogram suppression in the α band (5-7 Hz in infants, known as the mu rhythm) during action observation, and lead to more proficient imitation skills. Consistent with this hypothesis, the infants reared by their mothers were more likely to imitate lipsmacking (LS) - a natural, affiliative gesture - and exhibited greater mu rhythm desynchronization while viewing LS gestures than the nursery-reared infants. These effects were not found in response to tongue protrusion, a meaningless gesture, or a nonsocial control. These data suggest that socially enriched early experiences in the first days after birth increase brain sensitivity to socially relevant actions.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrés Canales-Johnson ◽  
Renzo C. Lanfranco ◽  
Juan Pablo Morales ◽  
David Martínez-Pernía ◽  
Joaquín Valdés ◽  
...  

AbstractMental imagery is the process through which we retrieve and recombine information from our memory to elicit the subjective impression of “seeing with the mind’s eye”. In the social domain, we imagine other individuals while recalling our encounters with them or modelling alternative social interactions in future. Many studies using imaging and neurophysiological techniques have shown several similarities in brain activity between visual imagery and visual perception, and have identified frontoparietal, occipital and temporal neural components of visual imagery. However, the neural connectivity between these regions during visual imagery of socially relevant stimuli has not been studied. Here we used electroencephalography to investigate neural connectivity and its dynamics between frontal, parietal, occipital and temporal electrodes during visual imagery of faces. We found that voluntary visual imagery of faces is associated with long-range phase synchronisation in the gamma frequency range between frontoparietal electrode pairs and between occipitoparietal electrode pairs. In contrast, no effect of imagery was observed in the connectivity between occipitotemporal electrode pairs. Gamma range synchronisation between occipitoparietal electrode pairs predicted subjective ratings of the contour definition of imagined faces. Furthermore, we found that visual imagery of faces is associated with an increase of short-range frontal synchronisation in the theta frequency range, which temporally preceded the long-range increase in the gamma synchronisation. We speculate that the local frontal synchrony in the theta frequency range might be associated with an effortful top-down mnemonic reactivation of faces. In contrast, the long-range connectivity in the gamma frequency range along the fronto-parieto-occipital axis might be related to the endogenous binding and subjective clarity of facial visual features.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0207476 ◽  
Author(s):  
Olivia M. Lapenta ◽  
Elisabetta Ferrari ◽  
Paulo S. Boggio ◽  
Luciano Fadiga ◽  
Alessandro D’Ausilio

2021 ◽  
Author(s):  
Kyveli Kompatsiari ◽  
Francesco Bossi ◽  
Agnieszka Wykowska

Eye contact established by a human partner has been shown to affect various cognitive processes of the receiver. However, little is known about humans’ responses to eye contact established by a humanoid robot. Here, we aimed at examining humans’ oscillatory brain response to eye contact with a humanoid robot. Eye contact (or lack thereof) was embedded in a gaze cueing task and preceded the phase of gaze-related attentional orienting. In addition to examining the effect of eye contact on the recipient, we also tested its impact on gaze cueing effects. Results showed that participants rated eye contact as more engaging and responded with higher desynchronization of alpha-band activity in left fronto-central and central electrode clusters when the robot established eye contact with them, compared to no eye contact condition. However, eye contact did not modulate gaze cueing effects. The results are interpreted in terms of the functional roles involved in alpha central rhythms (potentially interpretable also as mu rhythm), including joint attention and engagement in social interaction.


2019 ◽  
Author(s):  
S.J. Jerjian ◽  
R.N. Lemon ◽  
A. Kraskov

ABSTRACTNeurons in the primate motor cortex, including identified pyramidal tract neurons projecting to the spinal cord, respond to the observation of others’ actions, yet this does not cause movement in the observer. Here, we investigated changes in spinal excitability during action observation by monitoring short latency electromyographic responses produced by single shocks delivered directly to the pyramidal tract. Responses in hand and digit muscles were recorded from two adult rhesus macaques while they performed, observed or withheld reach-to-grasp and hold actions. We found modest grasp-specific facilitation of hand muscle responses during hand shaping for grasp, which persisted when the grasp was predictable but obscured from the monkey’s vision. We also found evidence of a more general inhibition before observed movement onset, and the size of this inhibition effect was comparable to the inhibition after an explicit NoGo signal. These results confirm that the spinal circuitry controlling hand muscles is modulated during action observation, and this may be driven by internal representations of actions. The relatively modest changes in spinal excitability during observation suggest net corticospinal outflow exerts only minor, sub-threshold changes on hand motoneuron pools, thereby preventing any overflow of mirror activity into overt movement.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Monica Angelini ◽  
Maddalena Fabbri-Destro ◽  
Nicola Francesco Lopomo ◽  
Massimiliano Gobbo ◽  
Giacomo Rizzolatti ◽  
...  
Keyword(s):  

2017 ◽  
Vol 37 (24) ◽  
pp. 5936-5947 ◽  
Author(s):  
Michel-Pierre Coll ◽  
Clare Press ◽  
Hannah Hobson ◽  
Caroline Catmur ◽  
Geoffrey Bird

2013 ◽  
Vol 89 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Lieke Braadbaart ◽  
Justin H.G. Williams ◽  
Gordon D. Waiter

2019 ◽  
Vol 117 (38) ◽  
pp. 23317-23322 ◽  
Author(s):  
Joaquín Sanz ◽  
Paul L. Maurizio ◽  
Noah Snyder-Mackler ◽  
Noah D. Simons ◽  
Tawni Voyles ◽  
...  

Social experience is an important predictor of disease susceptibility and survival in humans and other social mammals. Chronic social stress is thought to generate a proinflammatory state characterized by elevated antibacterial defenses and reduced investment in antiviral defense. Here we manipulated long-term social status in female rhesus macaques to show that social subordination alters the gene expression response to ex vivo bacterial and viral challenge. As predicted by current models, bacterial lipopolysaccharide polarizes the immune response such that low status corresponds to higher expression of genes in NF-κB–dependent proinflammatory pathways and lower expression of genes involved in the antiviral response and type I IFN signaling. Counter to predictions, however, low status drives more exaggerated expression of both NF-κB– and IFN-associated genes after cells are exposed to the viral mimic Gardiquimod. Status-driven gene expression patterns are linked not only to social status at the time of sampling, but also to social history (i.e., past social status), especially in unstimulated cells. However, for a subset of genes, we observed interaction effects in which females who fell in rank were more strongly affected by current social status than those who climbed the social hierarchy. Taken together, our results indicate that the effects of social status on immune cell gene expression depend on pathogen exposure, pathogen type, and social history—in support of social experience-mediated biological embedding in adulthood, even in the conventionally memory-less innate immune system.


2018 ◽  
Vol 60 (8) ◽  
pp. 879-888 ◽  
Author(s):  
Erin L. Kinnally ◽  
Mireille N. Gonzalez ◽  
John P. Capitanio

Sign in / Sign up

Export Citation Format

Share Document