Evaluation of a Flow-Cytometric Osmotic Fragility Test for Hereditary Spherocytosis in Chinese Patients

2015 ◽  
Vol 135 (2) ◽  
pp. 88-93 ◽  
Author(s):  
Yi-Feng Tao ◽  
Zeng-Fu Deng ◽  
Lin Liao ◽  
Yu-Ling Qiu ◽  
Xue-Lian Deng ◽  
...  

Background: Osmotic fragility testing based on flow cytometry was recently introduced for the screening of hereditary spherocytosis (HS). This study was undertaken to evaluate the clinical diagnostic value of a flow-cytometric osmotic fragility test for HS. Methods: Peripheral blood was collected from 237 subjects at the First Affiliated Hospital of Guangxi Medical University, including 56 HS patients, 86 thalassemia patients and 95 healthy controls. The samples were examined by flow-cytometric osmotic fragility test and the percentage of residual red blood cells was used to determine HS. Peripheral blood smears were performed to examine the red blood cell morphology. Results: With clinical diagnosis of HS as the gold standard and the percentage of residual red blood cells <23.6% as the diagnostic threshold in the flow-cytometric osmotic fragility test, the sensitivity of the flow-cytometric osmotic fragility test for HS was 85.71% and the specificity was 97.24%. Conclusion: The flow-cytometric osmotic fragility test combined with a red blood cell morphology test by peripheral blood smear could be a simple, practical and accurate laboratory screening method for HS.

2014 ◽  
Vol 53 (1) ◽  
pp. 167-171 ◽  
Author(s):  
Lori D. Racsa ◽  
Rita M. Gander ◽  
Paul M. Southern ◽  
Erin McElvania TeKippe ◽  
Christopher Doern ◽  
...  

Conventional microscopy is the gold standard for malaria diagnosis. The CellaVision DM96 is a digital hematology analyzer that utilizes neural networks to locate, digitize, and preclassify leukocytes and characterize red blood cell morphology. This study compared the detection rates ofPlasmodiumandBabesiaspecies on peripheral blood smears utilizing the CellaVision DM96 with the rates for a routine red blood cell morphology scan. A total of 281 slides were analyzed, consisting of 130 slides positive forPlasmodiumorBabesiaspecies and 151 negative controls. Slides were blinded, randomized, and analyzed by CellaVision and microscopy for red cell morphology scans. The technologists were blinded to prior identification results. The parasite detection rate was 73% (95/130) for CellaVision and 81% (105/130) for microscopy for positive samples. The interobserver agreement between CellaVision and microscopy was fair, as Cohen's kappa coefficient equaled 0.36. Pathologist review of CellaVision images identified an additional 15 slides with parasites, bringing the total number of detectable positive slides to 110 of 130 (85%).Plasmodium ovalehad the lowest rate of detection at 56% (5 of 9);Plasmodium malariaeandBabesiaspp. had the highest rate of detection at 100% (3/3 and 6/6, respectively). The detection rate by CellaVision was 100% (23/23) when the parasitemia was ≥2.5%. The detection rate for <0.1% parasitemia was 63% (15/24). Technologists appropriately classified all negative specimens. The percentage of positive specimens detectable by CellaVision (73%) approaches results for microscopy on routine scan of peripheral blood smears for red blood cell morphology.


Development ◽  
2002 ◽  
Vol 129 (18) ◽  
pp. 4359-4370 ◽  
Author(s):  
Ebrahim Shafizadeh ◽  
Barry H. Paw ◽  
Helen Foott ◽  
Eric C. Liao ◽  
Bruce A. Barut ◽  
...  

The red blood cell membrane skeleton is an elaborate and organized network of structural proteins that interacts with the lipid bilayer and transmembrane proteins to maintain red blood cell morphology, membrane deformability and mechanical stability. A crucial component of red blood cell membrane skeleton is the erythroid specific protein 4.1R, which anchors the spectrin-actin based cytoskeleton to the plasma membrane. Qualitative and quantitative defects in protein 4.1R result in congenital red cell membrane disorders characterized by reduced cellular deformability and abnormal cell morphology. The zebrafish mutants merlot (mot) and chablis (cha) exhibit severe hemolytic anemia characterized by abnormal cell morphology and increased osmotic fragility. The phenotypic analysis of merlot indicates severe hemolysis of mutant red blood cells, consistent with the observed cardiomegaly, splenomegaly, elevated bilirubin levels and erythroid hyperplasia in the kidneys. The result of electron microscopic analysis demonstrates that mot red blood cells have membrane abnormalities and exhibit a severe loss of cortical membrane organization. Using positional cloning techniques and a candidate gene approach, we demonstrate that merlot and chablis are allelic and encode the zebrafish erythroid specific protein 4.1R. We show that mutant cDNAs from both alleles harbor nonsense point mutations, resulting in premature stop codons. This work presents merlot/chablis as the first characterized non-mammalian vertebrate models of hereditary anemia due to a defect in protein 4.1R integrity.


2012 ◽  
Vol 1 ◽  
pp. 13
Author(s):  
Ning Zhang

<p><strong>Objective: </strong>The changes of urinary red blood cell morphology and the average volume of red blood cell were examined by MCV. <strong>Method:</strong> In 100 cases of patients with urinary sediment microscopy of hematuria, and used blood cell analyzer for determination for MCV in urinary RBC. <strong>Results</strong><strong>: </strong>Renal hematuria MCV and the outer peripheral blood MCV has significant difference (<em>p</em> &lt; 0.01) and non-renal hematuria and peripheral blood MCV had no significant difference, glomerular hematuria and non-glomerular hematuria erythrocyte deformity was significantly different (<em>p</em> &lt; 0.01), renal hematuria MCV is less than or equal to 73 fL, abnormal red blood cells with 2 or more, deformity rate is more than or equal to 76%. <strong>Conclusion:</strong> RBC phase combined with MCV detection of urine RBC is the practical value in diagnosis of glomerular hematuria.</p>


2018 ◽  
Vol 6 (3) ◽  
pp. 298-301
Author(s):  
Ekta Patidar

Anemia is a common entity which every clinician and pathologist faces very frequently. Proper clinical history, physical examination and laboratory investigations are essential for diagnostic interpretation of anemia. Peripheral blood examination is a basic screening haematological tool used for its evaluation.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Adrián Gutiérrez-Cervantes ◽  
Concepción del Carmen Ahuja-Aguirre ◽  
Lorena López-deBuen ◽  
Sergio Alberto Viveros-Peredo

The objective of the study was to determine the morphological characteristics of peripheral blood cells (erythrocytes, leukocytes, thrombocytes) and the leukocyte differential count (heterophils, eosinophils, basophils, lymphocytes, monocytes, azurophils) of captive Morelet’s crocodiles (Crocodylus moreletii) from Veracruz, Mexico. Peripheral blood from 80 apparently healthy farmed crocodiles (39 subadults [19 females, 20 males] and 41 adults [18 females, 23 males]) was examined for morphology through stained blood smears and manual count was used for the leukocyte differential. Blood was collected during the non-breeding (n = 42) and breeding (n = 38) seasons. Blood examination indicated similar morphological characteristics of blood cells in subadult and adult individuals and in females and males in both seasons. Erythrocytes were the largest blood cells and lymphocytes the smallest. The leukocyte differential count showed that lymphocytes were the most abundant leukocytes and basophils the least numerous. The percentages of some leukocytes showed difference by season (non-breeding and breeding) in subadult and adult males (p < 0.05) and by size (subadults and adults) in males and females but only in the non-breeding season (p < 0.05). The leukocytes that showed the greatest variation were lymphocytes, heterophils and eosinophils. The knowledge of blood cell morphology and the leukocyte differential count in healthy farmed Morelet’s crocodiles will allow the accurate diagnosis of some diseases of captive and wild individuals.  


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yuncheng Man ◽  
Debnath Maji ◽  
Ran An ◽  
Sanjay Ahuja ◽  
Jane A Little ◽  
...  

Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contributes to vaso-occlusion and disease pathophysiology. However, there are few...


Blood ◽  
2013 ◽  
Vol 121 (1) ◽  
pp. 9-9 ◽  
Author(s):  
Etheresia Pretorius ◽  
Boguslaw Lipinski

Sign in / Sign up

Export Citation Format

Share Document