Convergent Results from Neuropsychology and from Neuroimaging in Patients with Mild Cognitive Impairment

2017 ◽  
Vol 43 (3-4) ◽  
pp. 144-154 ◽  
Author(s):  
Carl Fredrik Eliassen ◽  
Ivar Reinvang ◽  
Per Selnes ◽  
Tormod Fladby ◽  
Erik Hessen

Background/Aims: To investigate the correspondence between neuropsychological single measures and variation in fludeoxyglucose positron emission tomography (FDG PET) glucose metabolism and magnetic resonance imaging (MRI) cortical thickness in mild cognitive impairment (MCI) patients. Methods: Forty-two elderly controls and 73 MCI subjects underwent FDG PET and MRI scanning. Backward regression analyses with PET and MRI regions were used as dependent variables, while Rey Auditory Verbal Memory Test (RAVLT) recall, Trail Making Test B (TMT B), and a composite test score (RAVLT learning and immediate recall, TMT A, COWAT, and letter-number sequencing) were used as predictor variables. Results: The composite score predicted variation in cortical metabolism; supplementary analyses showed that TMT B was significantly correlated with PET metabolism as well. RAVLT and TMT B were significant predictors of variation in MRI cortical thickness. Conclusion: Our results indicate that RAVLT and TMT B are sensitive to variation in Alzheimer disease neuroimaging markers.

2021 ◽  
Vol 18 ◽  
Author(s):  
Amir Ashraf-Ganjouei ◽  
Kamyar Moradi ◽  
Shahriar Faghani ◽  
AmirHussein Abdolalizadeh ◽  
Mohammadreza Khomeijani-Farahani ◽  
...  

Background: Mild cognitive impairment (MCI) is a state between normal cognition and dementia. However, MCI diagnosis does not necessarily guarantee the progression to dementia. Since no previous study investigated brain positron emission tomography (PET) imaging of MCI-- to-normal reversion, we provided PET imaging of MCI-to-normal reversion using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Methods: We applied comprehensive neuropsychological criteria (NP criteria), consisting of mem- ory, language, and attention/executive function domains, to include patients with a baseline diagno- sis of MCI (n=613). According to the criteria, the year 1 status of the patients was categorized into three groups (reversion: n=105, stable MCI: n=422, conversion: n=86). Demographic, neuropsycho- logical, genetic, CSF, and cognition biomarker variables were compared between the groups. Addi- tionally, after adjustment for confounding variables, the deposition pattern of amyloid-β and cere- bral glucose metabolism were compared between three groups via AV45- and FDG-PET modali- ties, respectively. Results: MCI reversion rate was 17.1% during one year of follow-up. The reversion group had the lowest frequency of APOE ε4+ subjects, the highest CSF level of amyloid-β, and the lowest CSF levels of t-tau and p-tau. Neuropsychological assessments were also suggestive of better cognitive performance in the reversion group. Patients with reversion to normal state had higher glucose metabolism in bilateral angular and left middle/inferior temporal gyri, when compared to those with stable MCI state. Meanwhile, lower amyloid-β deposition at baseline was observed in the fron- tal and parietal regions of the reverted subjects. On the other hand, the conversion group showed lower cerebral glucose metabolism in bilateral angular and bilateral middle/inferior temporal gyri compared to the stable MCI group, whereas the amyloid-β accumulation was similar between the groups. Conclusions: This longitudinal study provides novel insight regarding the application of PET imag- ing in predicting MCI transition over time.


2016 ◽  
Vol 32 (1) ◽  
pp. 22-26 ◽  
Author(s):  
Robert Haussmann ◽  
Annett Werner ◽  
Antonia Gruschwitz ◽  
Antje Osterrath ◽  
Jan Lange ◽  
...  

Patients with amnestic mild cognitive impairment (aMCI) are at risk for developing Alzheimer’s disease. Due to their prominent memory impairment, structural magnetic resonance imaging (MRI) often focuses on the hippocampal region. However, recent positron-emission tomography data suggest that within a network of frontal and temporal changes, patients with aMCI show metabolic alterations in the precuneus, a key region for higher cognitive functions. Using high-resolution MRI and whole-brain cortical thickness analyses in 28 patients with aMCI and 25 healthy individuals, we wanted to investigate whether structural changes in the precuneus would be associated with cortical thickness reductions in frontal and temporal brain regions in patients with aMCI. In contrast to healthy people, patients with aMCI showed an association of cortical thinning in the precuneus with predominantly left-hemispheric thickness reductions in medial temporal and frontal cortices. Our data highlight structural neuronal network characteristics among patients with aMCI.


2019 ◽  
Vol 26 (2) ◽  
pp. 210-225 ◽  
Author(s):  
Joanna Ciafone ◽  
Bethany Little ◽  
Alan J. Thomas ◽  
Peter Gallagher

AbstractObjectives:Dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD) have substantial clinical and biological overlap, with cognitive deficits typically observed in the executive and visuospatial domains. However, the neuropsychological profiles of mild cognitive impairment (MCI) associated with these disorders are not well understood.Methods:This systematic review examined existing literature on cognition in MCI due to LB disease (MCI-LB) and PD (PD-MCI) using an electronic search of seven databases (Medline, Embase, Psychinfo, PubMed, ProQuest, Scopus, and ScienceDirect). MCI-LB results were reviewed narratively given the small number of resulting papers (n = 7). Outcome variables from PD-MCI studies (n = 13) were extracted for meta-analysis of standardised mean differences (SMD).Results:In MCI-LB, executive dysfunction and slowed processing speed were the most prominent impairments, while visuospatial and working memory (WM) functions were also poor. MCI-LB scored significantly lower on verbal memory tests relative to controls, but significantly higher than patients with MCI due to Alzheimer’s disease. Quantitative analysis of studies in PD-MCI showed a similar profile of impairment, with the largest deficits in visuospatial function (Benton Judgement of Line Orientation, SMD g = −2.09), executive function (Trail Making Test B, SMD g = −1.65), verbal ability (Naming Tests, SMD g = −0.140), and WM (Trail Making Test A, SMD g = −1.20). In both MCI-LB and PD-MCI, verbal and visuospatial memory retrieval was impaired, while encoding and storage appeared relatively intact.Conclusions:The findings of this systematic review indicate similar neuropsychological profiles in the MCI stages of DLB and PDD. Executive impairment may at least partially explain poor performance in other domains.


2021 ◽  
Author(s):  
Yong-lan Xiong ◽  
Joseph Therriault ◽  
Shu-jiang Ren ◽  
Xiao-jun Jing ◽  
Hua Zhang

Abstract The introduction of metabolomics makes it possible to study the characteristic changes of peripheral metabolism in Alzheimer’s disease (AD). Recent studies have found that the levels of valine are related to mild cognitive impairment (MCI) and AD, but its characteristics in MCI and AD need to be further clarified. A total of 786 participants from the Alzheimer’s Disease Neuroimaging Initiative-1 (ADNI-1) cohort were selected to evaluate the relationships between serum valine and cerebrospinal fluid (CSF) biomarkers, brain structure (magnetic resonance imaging, MRI), cerebral glucose metabolism (18F-fluorodeoxyglucose-positron emission tomography, FDG-PET), and cognitive declines, through different cognitive subgroups. We found that (1) serum valine was decreased in patients with AD compared with cognitive normal (CN) and stable MCI (sMCI), and in progressive MCI (pMCI) compared with CN; (2) serum valine was negatively correlated with CSF total tau (t-tau) and phosphorylated tau (p-tau) in pMCI; (3) serum valine significantly predicted conversion from MCI to AD; (4) serum valine was related to the rate of change of cerebral glucose metabolism during the follow-up period in pMCI. We speculated serum valine may be a peripheral biomarker of pMCI and AD, and its level predicts the progression of MCI to AD. Our study may help to reveal the metabolic changes during AD disease trajectory and its relationship to clinical phenotype.


2020 ◽  
Author(s):  
Gang Xu ◽  
Shuzhan Zheng ◽  
Zhilong Zhu ◽  
Xiaofeng Yu ◽  
Jian Jiang ◽  
...  

Abstract Background To examine the patterns of longitudinal tau accumulation and cortical atrophy and their association in patients with mild cognitive impairment (MCI). Methods We collected 23 participants (60-89 years old, 11 male/12 female) with MCI from the Alzheimer’s Disease Neuroimaging Initiative database. All participants underwent 18 F flortauirpir (FTP) positron emission tomography (PET) and structural magnetic resonance imaging (MRI) scans at the baseline and follow-up visits (12-36 months). General linear models with covariates (baseline age, sex) were used to detect brain areas of significant tau accumulation and atrophy over time. The mediation analysis was employed to explore the potential reason for sequential biomarker changes in MCI progression, adjusting for baseline age, sex, education.Results Voxelwise tau accumulation in MCI patients was predominantly located in inferior temporal, middle temporal, parietal cortex, posterior cingulate, precuneus as well as temporo-parietal regions ( P < 0.001), and MRI atrophy included inferior-middle temporal, parietal lobe, cerebellum and precuneus ( P < 0.001). Longitudinal FTP accumulation was moderately associated with MRI cortical atrophy ( r = 0.409, 95% CI: 0.405-0.414, P < 0.01). Regional analyses indicated significant bivariate associations between MRI cortical atrophy and FTP accumulation (baseline FTP cortical uptake and longitudinal FTP change). The result of the mediation analysis showed the relationship between baseline FTP uptake and longitudinal cortical atrophy was partly mediated by the longitudinal FTP cortical change (indirect effect: 0.0107, P = 0.04).Conclusions Our finding provides a preliminary description of the patterns of longitudinal FTP accumulation and cortical atrophy in MCI progression, and MCI patients with high tau binding level show increase risk of longitudinal tau accumulation, atrophy and cognitive decline.


2020 ◽  
Vol 77 (4) ◽  
pp. 1609-1622
Author(s):  
Franziska Mathies ◽  
Catharina Lange ◽  
Anja Mäurer ◽  
Ivayla Apostolova ◽  
Susanne Klutmann ◽  
...  

Background: Positron emission tomography (PET) of the brain with 2-[F-18]-fluoro-2-deoxy-D-glucose (FDG) is widely used for the etiological diagnosis of clinically uncertain cognitive impairment (CUCI). Acute full-blown delirium can cause reversible alterations of FDG uptake that mimic neurodegenerative disease. Objective: This study tested whether delirium in remission affects the performance of FDG PET for differentiation between neurodegenerative and non-neurodegenerative etiology of CUCI. Methods: The study included 88 patients (82.0±5.7 y) with newly detected CUCI during hospitalization in a geriatric unit. Twenty-seven (31%) of the patients were diagnosed with delirium during their current hospital stay, which, however, at time of enrollment was in remission so that delirium was not considered the primary cause of the CUCI. Cases were categorized as neurodegenerative or non-neurodegenerative etiology based on visual inspection of FDG PET. The diagnosis at clinical follow-up after ≥12 months served as ground truth to evaluate the diagnostic performance of FDG PET. Results: FDG PET was categorized as neurodegenerative in 51 (58%) of the patients. Follow-up after 16±3 months was obtained in 68 (77%) of the patients. The clinical follow-up diagnosis confirmed the FDG PET-based categorization in 60 patients (88%, 4 false negative and 4 false positive cases with respect to detection of neurodegeneration). The fraction of correct PET-based categorization did not differ between patients with delirium in remission and patients without delirium (86% versus 89%, p = 0.666). Conclusion: Brain FDG PET is useful for the etiological diagnosis of CUCI in hospitalized geriatric patients, as well as in patients with delirium in remission.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Jiangyi Xia ◽  
Ali Mazaheri ◽  
Katrien Segaert ◽  
David P Salmon ◽  
Danielle Harvey ◽  
...  

Abstract Reliable biomarkers of memory decline are critical for the early detection of Alzheimer’s disease. Previous work has found three EEG measures, namely the event-related brain potential P600, suppression of oscillatory activity in the alpha frequency range (∼10 Hz) and cross-frequency coupling between low theta/high delta and alpha/beta activity, each of which correlates strongly with verbal learning and memory abilities in healthy elderly and patients with mild cognitive impairment or prodromal Alzheimer’s disease. In the present study, we address the question of whether event-related or oscillatory measures, or a combination thereof, best predict the decline of verbal memory in mild cognitive impairment and Alzheimer’s disease. Single-trial correlation analyses show that despite a similarity in their time courses and sensitivities to word repetition, the P600 and the alpha suppression components are minimally correlated with each other on a trial-by-trial basis (generally |rs| &lt; 0.10). This suggests that they are unlikely to stem from the same neural mechanism. Furthermore, event-related brain potentials constructed from bandpass filtered (delta, theta, alpha, beta or gamma bands) single-trial data indicate that only delta band activity (1–4 Hz) is strongly correlated (r = 0.94, P &lt; 0.001) with the canonical P600 repetition effect; event-related potentials in higher frequency bands are not. Importantly, stepwise multiple regression analyses reveal that the three event-related brain potential/oscillatory measures are complementary in predicting California Verbal Learning Test scores (overall R2’s in 0.45–0.63 range). The present study highlights the importance of combining EEG event-related potential and oscillatory measures to better characterize the multiple mechanisms of memory failure in individuals with mild cognitive impairment or prodromal Alzheimer’s disease.


2021 ◽  
pp. 1-19
Author(s):  
Joanna Perła-Kaján ◽  
Olga Włoczkowska ◽  
Anetta Zioła-Frankowska ◽  
Marcin Frankowski ◽  
A. David Smith ◽  
...  

Background: Identification of modifiable risk factors that affect cognitive decline is important for the development of preventive and treatment strategies. Status of paraoxonase 1 (PON1), a high-density lipoprotein-associated enzyme, may play a role in the development of neurological diseases, including Alzheimer’s disease. Objective: We tested a hypothesis that PON1 status predicts cognition in individuals with mild cognitive impairment (MCI). Methods: Individuals with MCI (n = 196, 76.8-years-old, 60% women) participating in a randomized, double-blind placebo-controlled trial (VITACOG) were assigned to receive a daily dose of folic acid (0.8 mg), vitamin B12 (0.5 mg) and B6 (20 mg) (n = 95) or placebo (n = 101) for 2 years. Cognition was analyzed by neuropsychological tests. Brain atrophy was quantified in a subset of participants (n = 168) by MRI. PON1 status, including PON1 Q192R genotype, was determined by quantifying enzymatic activity of PON1 using paraoxon and phenyl acetate as substrates. Results: In the placebo group, baseline phenylacetate hydrolase (PhAcase) activity of PON1 (but not paraoxonase activity or PON1 Q192R genotype) was significantly associated with global cognition (Mini-Mental State Examination, MMSE; Telephone Inventory for Cognitive Status-modified, TICS-m), verbal episodic memory (Hopkins Verbal Learning Test-revised: Total Recall, HVLT-TR; Delayed Recall, HVLT-DR), and attention/processing speed (Trail Making A and Symbol Digits Modalities Test, SDMT) at the end of study. In addition to PhAcase, baseline iron and triglycerides predicted MMSE, baseline fatty acids predicted SDMT, baseline anti-N-Hcy-protein autoantibodies predicted TICS-m, SDMT, Trail Making A, while BDNF V66M genotype predicted HVLT-TR and HVLT-DR scores at the end of study. B-vitamins abrogated associations of PON1 and other variables with cognition. Conclusion: PON1 is a new factor associated with impaired cognition that can be ameliorated by B-vitamins in individuals with MCI.


2021 ◽  
Vol 11 (3) ◽  
pp. 236
Author(s):  
Pieter H. Nienhuis ◽  
Gijs D. van Praagh ◽  
Andor W. J. M. Glaudemans ◽  
Elisabeth Brouwer ◽  
Riemer H. J. A. Slart

Imaging is becoming increasingly important for the diagnosis of large vessel vasculitis (LVV). Atherosclerosis may be difficult to distinguish from LVV on imaging as both are inflammatory conditions of the arterial wall. Differentiating atherosclerosis from LVV is important to enable optimal diagnosis, risk assessment, and tailored treatment at a patient level. This paper reviews the current evidence of ultrasound (US), 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET), computed tomography (CT), and magnetic resonance imaging (MRI) to distinguish LVV from atherosclerosis. In this review, we identified a total of eight studies comparing LVV patients to atherosclerosis patients using imaging—four US studies, two FDG-PET studies, and two CT studies. The included studies mostly applied different methodologies and outcome parameters to investigate vessel wall inflammation. This review reports the currently available evidence and provides recommendations on further methodological standardization methods and future directions for research.


Sign in / Sign up

Export Citation Format

Share Document