scholarly journals Immunoregulatory Role of MicroRNA-21 in Macrophages in Response to Bacillus Calmette-Guerin Infection Involves Modulation of the TLR4/MyD88 Signaling Pathway

2017 ◽  
Vol 42 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Xin Xue ◽  
Yi Qiu ◽  
Hong-Li Yang

Background/Aims: The purpose of this study is to explore the immunoregulatory role of microRNA-21 (miR-21) targeting of the TLR4/MyD88 signaling pathway in macrophages in response to Bacillus Calmette-Guerin (BCG) infection. Methods: After infection with BCG, mouse RAW246.7 cells were assigned into control, BCG, miR-21 mimic + BCG, mimic-negative control (NC) + BCG, miR-21 inhibitor + BCG, inhibitor-NC + BCG, BCG + TAK242 (an inhibitor of the TLR4 signaling pathway), and miR-21 inhibitor + TAK242 + BCG groups. Western blotting and qRT-PCR were used to detect the expression of miR-21, TLR4 and MyD88. The levels of TNF-a, IL-6 and IL-10 were detected by enzyme-linked immunosorbent assay (ELISA). Cell viability was measured using an MTT assay. Cell apoptosis and necrosis rates were detected using flow cytometry. Results: Compared with the control group, miR-21 expression and levels of TNF-a, IL-6 and IL-10, as well as cell apoptosis and necrosis rates, were elevated, while expression of TLR4 and MyD88, as well as cell viability, were reduced in BCG infection groups. Compared with the BCG group, miR-21 expression was increased in the miR-21 mimic + BCG group but decreased in the miR-21 inhibitor + BCG and miR-21 inhibitor + TAK242 + BCG groups. The expression of TLR4 and MyD88, as well as the cell viability, were decreased, while levels of TNF-a, IL-6 and IL-10, as well as cell apoptosis and necrosis rates, were increased in the miR-21 mimic + BCG and TAK242 + BCG groups. The opposite trends were found in the miR-21 inhibitor + BCG group. Compared with the TAK242 + BCG group, the miR-21 inhibitor + TAK242 + BCG group had higher expression of TLR4 and MyD88 as well as higher cell viability and lower levels of TNF-a, IL-6, IL-10, cell apoptosis and necrosis rates. However, the miR-21 inhibitor + TAK242 + BCG group exhibited the opposite trends when compared with the miR-21 inhibitor + BCG group. Conclusion: Our results suggest that miR-21 can negatively modulate the TLR4/MyD88 signaling pathway, resulting in decreased cell viability, increased cell apoptosis and increased levels of inflammatory factors following BCG infection in macrophages.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shuang Liu ◽  
Wen Yan ◽  
Yanbing Hu ◽  
Huiying Wu

The present study aimed to explore the effects of shikonin (SKN) on the damage of human venous endothelial cells (HUVECs) induced by ox-LDL and the underlying molecular mechanism. The HUVECs were randomly divided into six groups: control, ox-LDL, SKN + ox-LDL, SKN + ox-LDL + compound C, SKN + ox-LDL + si-Nrf2, and SKN + ox-LDL + si-HO-1. The MTT method was used to detect cell viability, flow cytometry was used to detect cell apoptosis and reactive oxygen species (ROS) levels, and Western blot was used to detect protein levels. Compared to the control group, the cell viability of the ox-LDL group decreased, the apoptosis rate increased, the level of cleaved caspase-3 was upregulated, and the level of Bcl-2 protein was downregulated. The level of TNF-α, IL-1β, IL-6, vascular cell adhesion molecule-1 (VCAM1), intercellular adhesion molecule-1 (ICAM1), and E-selectin (E-sel) was increased, ROS levels increased, and superoxide dismutase (SOD) level decreased. Moreover, the protein levels of p-AMPK, Nrf2, and HO-1 were decreased. Compared to the ox-LDL group, SKN treatment improves cell viability, alleviates cell apoptosis and oxidative stress injury, and upregulates the protein levels of p-AMPK, Nrf2, and HO-1. Compound C, si-Nrf2, and si-HO-1 administration inhibits the AMPK/Nrf2/HO-1 signaling pathway, increases ROS generation, and inhibits the antagonistic effect of SKN on ox-LDL-induced HUVECs damage. In summary, SKN suppressed ox-LDL-induced ROS production and improved cell viability and cell apoptosis via the AMPK/Nrf2/HO-1 pathway.


2020 ◽  
Author(s):  
Xue Song ◽  
Lugen Zuo ◽  
Luyao Wang ◽  
Zihan Zhu ◽  
Jing Tao ◽  
...  

ABSTRACTOBJECTIVESRottlerin, a pan PDE inhibitor, has a variety of pharmacological activities, including enhancing barrier function and mediating anti-inflammatory activity by changing the distribution of occludin and ZO-1. Nevertheless, the function of rottlerin on Crohn disease (CD) keep unknown. Our aim of the study is to investigate the role of rottlerin on CD-like colitis and its mechanism.METHODSWild-type mice which were 8-10 weeks old were randomly divided into three treatment groups: (i) the normal feeding, no administration (control) group, (ii) the group administered 3% dextran sodium sulfate (DSS) alone, and (iii) the group administered rottlerin (100 mg/kg) and 3% DSS. In this study, the effect of rottlerin on the function and structure of the intestinal barrier was investigated, and the possible mechanism was discussed. We performed signaling pathway analysis and flow cytometry to identify the detailed mechanisms by which rottlerin (10 μg/mL) treatment inhibits cell growth arrest and the attenuation of TJ proteins in LPS-treated FHs 74 int cells.RESULTSRottlerin treatment significantly ameliorated colitis induced by DSS in WT mice, which was manifested by a decrease in inflammation score, the attenuation of inflammatory factors and the inhibition of destruction on intestinal barrier structure. Rottlerin enhanced the levels of occludin and ZO-1, and improved the function of intestinal barrier, which may have been why rottlerin ameliorated colitis in WT mice. The anti-inflammatory effect of rottlerin may be partly due to the activation of Epac-2/Rap-1 signaling.CONCLUSIONSRottlerin may treat CD in humans via enhancing TJ proteins expression and improving the function of intestinal barrier.


2020 ◽  
Author(s):  
Lin Xu ◽  
Qingying Song ◽  
Zhanghong Ouyang ◽  
Xiangyan Zhang ◽  
Cheng Zhang

Abstract Pneumonia accounts for approximately 15% mortalities in adolescents worldwide. MicroRNAs (miRNAs) regulate numerous diseases including pneumonia. miRNA and mRNA expression levels were detected by real time polymerase chain reaction (RT-qPCR). Protein expression levels were determined by enzyme-linked immunosorbent assay (ELISA) and western blot. The interaction between phosphatase and tensin homolog on chromosome ten (PTEN) and miR-103a-3p was explored by dual luciferase reporter assay. Cell viability and cell apoptosis were detected by cell Counting Kit-8 (CCK-8) and flow cytometry. Herein, we discovered that PTEN was decreased and miR-103a-3p was overexpressed in Ana-1 cells of in vitro pneumonia model. miR-103a-3p downregulated the expression levels of PTEN. AntagomiR-103a-3p reversed the increased cell apoptosis and decreased cell viability and inflammatory cytokine expression levels (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6) induced by LPS in Ana-1 cells by PTEN. AntagomiR-103a-3p inhibited the activation of PTEN/PI3K/AKT/NF-κB signaling pathway induced by LPS in Ana-1 cells. Taken together, our findings exhibited that miR-103a-3p attenuated LPS induced pneumonia by blocking the activation of PTEN/PI3K/AKT/NF-κB signaling pathway and the following cell apoptosis as well as release of proinflammatory cytokines, suggesting that miR-103a-3p might serve as a novel therapeutic target for the treatment of pneumonia.


2021 ◽  
Vol 19 (12) ◽  
pp. 2491-2498
Author(s):  
Yan Li ◽  
Xing Ma ◽  
Jun Li ◽  
Saifei He ◽  
Juhua Zhuang ◽  
...  

Purpose: The study explored the role of lncRNA gas5 in ovarian granulosa cells exposed to X-ray in granulosa cell tumor of  ovary(GCTO). Methods:Exposed the KGN cell line (KALANG, Beijing, China) to X-ray to mimic the radiotherapy for GCSO patients in vitro, cell viability was checked by CCK8 assays. RT-qPCR detected the RNA expression of apoptosis-related genes while Western Blot for biomarkers in wnt/β-catenin signaling. Differential expressions of lncRNA gas5 were examined after cells exposed to X ray for 0,24,48hs. We over expressed gas5 and assessed resultant cell viabilities, apoptosis and signaling. The sponging between gas5 and miR-205-5p was verified through Luciferase Assay. CCK8, RT-qPCR and Western Blot were applied for investigations into the correlation between miR-205-5p and cell viability and apoptosis after miR-205-5p augmentation. Similarly, the interactions between the gas5 and  miR-205-5p were assessed after co-transfection of miR-205-5p mimics and oe-gas5. Last, wnt inhibitor was used to study the role of signaling pathway in KGN cells. Results: Exposure of KGN toX-ray reduced cell viabilities and increased apoptosis. Gas5 had reduced expression in cells while  miR-205-5p increased. Gas5 upregulation could protect the cells from apoptosis and add to the cell viability and activation of wnt//β-catenin signaling. lncRNA gas5 targeted miR-205-5p and miR-205-5p mimics could counteract functions of up-regulated lncRNA gas5, regulating Wnt/β-catenin signaling pathway. Inactivation in Wnt/β-catenin could suppress cell viability. Conclusions: lncRNA gas5 regulated the cell apoptosis and viability after cellular radiation, which might be a potential therapeutic target to combine into radiotherapy for GCTO patients in clinical stage. Keywords: Ovary, proliferation, apoptosis, lncRNA gas5, x-ray


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Gila Pirzad ◽  
Mahvash Jafari ◽  
Sasan Tavana ◽  
Homayoon Sadrayee ◽  
Saeid Ghavami ◽  
...  

Sulfur mustard (SM) is an alkylating agent that induces apoptosis and necrosis in cells. Fas-Fas ligand (FasL) interaction could induce apoptosis as well. In this study, it was hypothesized that apoptosis might play an important role in the pathogenesis of SM-induced lung injury via Fas-FasL signaling pathway. In a case-control study, Fas and FasL levels, caspase-3 activity and percent of apoptotic cells were measured in bronchoalveolar lavage (BAL) fluid of patients 20 years after exposure to sulfur mustard and compared with the control group. Results show that Fas and FasL levels were significantly higher in BAL fluid cells in patients group compared with the control (P=.001). No significant differences were observed between mild and moderate-severe groups. BAL fluid cells caspase-3 activity was not significantly different among the mild, moderate-severe, and control groups. The data suggest that Fas-FasL-induced apoptosis was impaired in BAL fluid cells of SM-exposed patients which might be one of the initiators of pathogenesis in SM-induced lung injury in these patients.


Author(s):  
S. Mukaratirwa ◽  
S. Chitanga ◽  
T. Chimatira ◽  
C. Makuleke ◽  
S.T. Sayi ◽  
...  

Therapeutic efficacy and histological changes after bacillus Calmette-Guerin (BCG), vincristine and BCG/vincristine combination therapy of canine transmissible venereal tumours (CTVT) were studied. Twenty dogs with naturally occurring CTVT in the progression stage were divided into 4 groups and treated with intratumoral BCG, vincristine, BCG/vincristine combination therapy or intratumoral buffered saline (control group). Tumour sizes were determined weekly and tumour response to therapy was assessed. Tumour biopsies were taken weekly to evaluate histological changes. Complete tumour regression was observed in all the dogs treated with BCG, vincristine and BCG/vincristine combination therapy. BCG/vincristine combination therapy had a statistically significantly shorter regression time than BCG or vincristine therapy. No tumour regression was observed in the control group. Intratumoral BCG treatment resulted in the appearance of macrophages and increased numbers of tumour infiltrating lymphocytes (TILs) followed by tumour cell apoptosis and necrosis. Treatment with vincristine resulted in increased tumour cell apoptosis, reduction in the mitotic index and a decrease in the number of TILs. Tumours from dogs on BCG/vincristine combination were characterised by reduction in the mitotic index, and appearance of numerous TILs and macrophages followed by marked tumour cell apoptosis and necrosis. This study indicates that combined BCG and vincristine therapy is more effective than vincristine in treating CTVT, suggesting that the clinical course of this disease may be altered by immunochemotherapy.


2019 ◽  
Author(s):  
Lei Zhang ◽  
Lili Dong ◽  
Yu Tang ◽  
Min Li ◽  
Mingming Zhang

Abstract Background Pneumonia is a common respiratory disease worldwide that can be prevented and treated. However, it is considered to be the leading cause of children death. The present study was aimed to explore the role of miR-146b and its underlying mechanism in lipopolysaccharide (LPS)-induced inflammation injury in pediatric pneumonia. Methods Human fibroblasts WI-38 cells treated with LPS were subjected to construct cell model with inflammation injury. QRT-PCR or Western blot was applied to detect miR-146b and MyD88 expression. ELISA kit was used to analyze the production of pro-inflammatory factors. Cell viability was evaluated by CCK-8 assay. The apoptosis proteins and the downstream genes of NF-κB pathway were detected by Western blot. Results We displayed that miR-146b was downregulated, whereas MyD88 was upregulated in children with pneumonia and in WI-38 cells treated with LPS. Moreover, re-expression of miR-146b suppressed the production of inflammatory factors in the serum of pneumonia patients and WI-38 cells. Also, elevating miR-146b expression increased cell viability and reduced cell apoptosis. However, MyD88 overturned the protective effect of miR-146b on inflammation injury in pediatric pneumonia. Moreover, miR-146b overexpression inhibited the activation of NF-κB signaling pathway by suppressing MyD88. Conclusions These findings revealed that miR-146b attenuated the inflammation injury in pediatric pneumonia through inhibiting MyD88/NF-κB signaling pathway.


2015 ◽  
Vol 37 (1) ◽  
pp. 361-374 ◽  
Author(s):  
Huan Yang ◽  
Jing Xiong ◽  
Wenjing Luo ◽  
Jian Yang ◽  
Tao Xi

Background/Aims: 8-Methoxypsoralen (8-MOP), a formerly considered photosensitizing agent, induces apoptosis when used alone. On this basis, the present study was designed to explore the effects and mechanisms of 8-MOP-induced apoptosis in human hepatocellular carcinoma HepG2 cells, independent of its photoactivation. Methods: We analyzed the cell viability with MTT assay. Flow cytometry was used to examine the apoptosis rate, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation after specific staining. The expression and location of apoptosis-associated protein as well as the activation status of cell signaling pathway were determined by Western blot analysis. Results: 8-MOP significantly decreased cell viability and induced cell apoptosis through mitochondrial apoptotic pathway, as demonstrated by increased Bax/Bcl-2 ratio, collapsed MMP, and induced cytochrome c release (Cyt c) and apoptosis-inducing factor (AIF) transposition. ROS generation was significantly increased by 8-MOP and the eradication of ROS significantly abolished 8-MOP-induced apoptosis. In addition, the activation of ERK1/2 was drastically decreased by 8-MOP as ERK inhibitor PD98059, indicating a role of ERK1/2 signaling pathway in 8-MOP-induced cell apoptosis. Conclusion: 8-MOP induces intrinsic apoptosis by increasing ROS generation and inhibiting ERK1/2 pathway in HepG2 cells. The findings are important in substantiating the anti-tumor role of 8-MOP in cancer therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ting Xu ◽  
Jia-Chen Guo ◽  
Sha-Sha Wu ◽  
Yan Wang ◽  
Xiao-Long Liu ◽  
...  

Background. Q-1 is a novel compound extracted from the Miao medicine Tiekuaizi. Although Q-1 is known to be a coumarin derivative, its structure has not been deposited in the ACX library. Our previous study showed that Q-1 inhibits the activity of inflammatory cells. This study explores the efficacy of Q-1 in regulating rheumatoid arthritis (RA). The findings show that Q-1 acts through the NF-κB signaling pathway. Methods. The effects of Q-1 were explored using a bovine type II collagen-induced arthritis (CIA) rat model. The CIA rats were intragastrically administered with high (30 mg·kg−1) or low (15 mg·kg−1) doses of Q-1. The control group was administered with an equal volume of drinking water, while the positive control group was administered with Tripterygium glycoside (9.45 mg·kg−1) for 28 consecutive days. The arthritis indices and ankle joint swelling rates were determined. The levels of IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1) in serum and sialic acid (SA) in liver homogenate were determined by enzyme-linked immunosorbent assay (ELISA). The pathological features of the ankle joint were analyzed by hematoxylin and eosin (HE) staining. The IκB, P-IκB, P65, and P-P65 protein levels in synovial tissue were assayed by western blotting. Results. The arthritis index, ankle joint swelling rate, IL-1β, IL-6, and MCP-1 levels in serum, SA level in liver tissue, and IκB, P-IκB, P65, and P-P65 protein levels in synovial tissues were significantly higher ( P < 0.01 ) in the CIA model compared to the control group. RA was successfully replicated by the CIA model, as shown by the joint swelling results and histopathological sections of the ankle. Notably, all the above indicators decreased significantly ( P < 0.01 ) after treatment with Q-1 compared to the model. In addition, animals treated with Q-1 showed lower inflammation in the ankle joints than the model rats. Conclusion. The findings indicate that Q-1 effectively inhibited RA in rats by downregulating IκB, P-IκB, P65, and P-P65, inhibiting the excessive release of inflammatory factors, and inhibiting the overactivation of the NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document