scholarly journals The Role of Tumor-Associated Macrophages in Colorectal Carcinoma Progression

2018 ◽  
Vol 45 (1) ◽  
pp. 356-365 ◽  
Author(s):  
Xiaoming Zhong ◽  
Bin Chen ◽  
Zhiwen Yang

Tumor-associated macrophages (TAMs) are one of the most abundant immune cells in the tumor microenvironment, and they play a pivotal role in prompting the various tumor growth. However, the role of TAMs in colorectal carcinoma (CRC) is controversial, because a few papers report that TAMs is beneficial to CRC patients. In this review, we discuss the good or bad roles of TAMs in CRC progression. Interestingly, recent studies provide strong evidence that TAMs facilitate CRC growth, but do not exert tumor suppressive activities. TAMs can stimulate CRC growth by altering extracellular matrix remodeling, tumor metabolism, angiogenesis, as well as the tumor microenvironment. Therefore, TAMs could serve as a target for CRC therapeutic treatment.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Jaehong Kim ◽  
Jong-Sup Bae

Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1046
Author(s):  
Jorge Martinez ◽  
Patricio C. Smith

Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as “desmoplastic reaction”. This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.


Author(s):  
Katarzyna Hackert ◽  
Susanne Homann ◽  
Shakila Mir ◽  
Arne Beran ◽  
Simone Gorreßen ◽  
...  

Cardiac wall stress induces local and systemic inflammatory responses that are increasingly recognized as key modulators of extracellular matrix remodeling. Hyaluronic acid interacts with immune cells and mesenchymal cells thereby modulating profibrotic signals. Here we tested the hypothesis that 4-methylumbelliferone (4-MU), an inhibitor of hyaluronic acid synthesis, would attenuate inflammation and extracellular matrix remodeling of pressure-overloaded myocardium in C57BL/6J male mice fed with 4-MU and subjected to TAC (transverse aortic constriction) surgery. Flow cytometry of immune cells showed TAC-induced leukocytosis due to an increase of neutrophils and monocytes. 4-MU strongly attenuated both circulating and cardiac leukocyte numbers 3 days after TAC. In the hearts, 4-MU reduced the number of CCR2 − resident macrophages. At later time points, 4-MU also prevented the infiltration of heart tissue by bone marrow-derived circulating monocytes leading to reduced cardiac macrophage counts even 7 weeks after TAC. The long-term attenuation of macrophage-driven inflammation was associated with less myocardial fibrosis in 4-MU-treated compared with untreated mice. Unexpectedly, 4-MU also reduced the development of left ventricular hypertrophy and increased cardiac output after TAC without affecting blood pressure. The data demonstrate that 4-MU reduces both resident and invading cardiac macrophages and may be a promising agent to alleviate pressure-overload induced myocardial damage.


2018 ◽  
Vol 38 (Suppl_1) ◽  
Author(s):  
Marika Fava ◽  
Javier Barallobre-Barreiro ◽  
Ursula Mayr ◽  
Ruifang Lu ◽  
Athanasios Didangelos ◽  
...  

2018 ◽  
Vol 38 (7) ◽  
pp. 1537-1548 ◽  
Author(s):  
Marika Fava ◽  
Javier Barallobre-Barreiro ◽  
Ursula Mayr ◽  
Ruifang Lu ◽  
Athanasios Didangelos ◽  
...  

2018 ◽  
Vol 11 ◽  
pp. 175628641881809 ◽  
Author(s):  
Egor Dzyubenko ◽  
Daniel Manrique-Castano ◽  
Christoph Kleinschnitz ◽  
Andreas Faissner ◽  
Dirk M. Hermann

Sign in / Sign up

Export Citation Format

Share Document