Solutions and gels containing a sugarcane-derived cystatin (CaneCPI-5) reduce enamel and dentin erosion in vitro

2021 ◽  
Author(s):  
Lethycia Almeida Santos ◽  
Tatiana Martini ◽  
João Victor Frazão Câmara ◽  
Fabiana Navas Reis ◽  
Adriana de Cássia Ortiz ◽  
...  

The effect of solutions and gels containing a sugarcane-derived cystatin (CaneCPI-5) on the protection against enamel and dentin erosion in vitro was evaluated. Bovine enamel and dentin specimens were divided into two groups (n=135 and 153/group for enamel and dentin, respectively) that were treated with solutions or chitosan gels containing 0.1 or 0.25 mg/ml CaneCPI-5. The positive controls for solutions and gels were Elmex Erosion Protection™ solution and NaF gel (12,300 ppm F), respectively. Deionized water and chitosan gel served as controls, respectively. The solutions were first applied on the specimens for 1 min and the gels for 4 min. Stimulated saliva was collected from 3 donors and used to form a 2 h acquired pellicle on the specimens. Then, the specimens were submitted to an erosive pH cycling protocol 4 times/day for 7 days (0.1% citric acid pH 2.5/90s, artificial saliva/2h, artificial saliva overnight). The solutions and gels were applied again during pH cycling, 2 times/day for 1 min and 4 min, respectively, after the first and last erosive challenges. Enamel and dentin losses (µm) were assessed by contact profilometry. Data were analyzed by 2-way ANOVA and Tukey´s test (p <0.05). All the treatments significantly reduced enamel and dentin loss in comparison with controls. Both CaneCPI-5 concentrations had a similar protective effect against enamel erosion, but only the higher concentration was as effective against dentin erosion as the positive control. Regarding the vehicles, only the 0.1 mg/ml gel performed worse than the positive control for dentin. CaneCPI-5 reduced enamel and dentin erosion to a similar extent as the fluoride-containing vehicles. However, dentin requires higher CaneCPI-5 concentrations, in the case of gels. Solutions or gels containing CaneCPI-5 might be a new approach to protect against dental erosion.

2013 ◽  
Vol 24 (3) ◽  
pp. 253-257 ◽  
Author(s):  
Edo Hirata ◽  
Marcelle Danelon ◽  
Isabelle Rodrigues Freire ◽  
Alberto Carlos Botazzo Delbem

The objective of this study was to evaluate in vitro the effect of a low fluoride toothpaste (450 µgF/g, NaF) combined with calcium citrate (Cacit) and sodium trimetaphosphate (TMP) on enamel remineralization. Bovine enamel blocks had the enamel surface polished sequentially to determine the surface hardness. After production of artificial carious lesions, the blocks selected by their surface hardness were submitted to remineralization pH cycling and daily treatment with dentifrice suspensions (diluted in deionized water or artificial saliva): placebo, 275, 450, 550 and 1,100 µgF/g and commercial dentifrice (positive control, 1,100 µgF/g). Finally, the surface and cross-section hardness was determined for calculating the change of surface hardness (%SH) and mineral content (%∆Z). Fluoride in enamel was also determined. The data from %SH, %∆Z and fluoride were subjected to two-way analysis of variance followed by Student-Newman-Keuls's test (p<0.05). The mineral gain (%SH and %∆Z) was higher for toothpastes diluted in saliva (p<0.05), except for the 450 µgF/g dentifrice with Cacit/TMP (p>0.05). The 450 Cacit/TMP toothpaste and the positive control showed similar results (p>0.05) when diluted in water. A dose-response was observed between fluoride concentration in toothpastes and fluoride present in enamel, regardless of dilution. It was concluded that it is possible to enhance the remineralization capacity of low F concentration toothpaste by of organic (Cacit) and inorganic (TMP) compounds with affinity to hydroxyapatite.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Lívia Picchi Comar ◽  
Marina Franciscon Gomes ◽  
Naiana Ito ◽  
Priscila Aranda Salomão ◽  
Larissa Tercília Grizzo ◽  
...  

The aim of this study was to compare the effect of toothpastes containing TiF4, NaF, and SnF2on tooth erosion-abrasion. Bovine enamel and dentin specimens were distributed into 10 groups (n=12): experimental placebo toothpaste (no F); NaF (1450 ppm F); TiF4(1450 ppm F); SnF2(1450 ppm F); SnF2(1100 ppm F) + NaF (350 ppm F); TiF4(1100 ppm F) + NaF (350 ppm F); commercial toothpaste Pro-Health (SnF2—1100 ppm F + NaF—350 ppm F, Oral B); commercial toothpaste Crest (NaF—1.500 ppm F, Procter & Gamble); abrasion without toothpaste and only erosion. The erosion was performed 4 × 90 s/day (Sprite Zero). The toothpastes’ slurries were applied and the specimens abraded using an electric toothbrush 2 × 15 s/day. Between the erosive and abrasive challenges, the specimens remained in artificial saliva. After 7 days, the tooth wear was evaluated using contact profilometry (μm). The experimental toothpastes with NaF, TiF4, SnF2, and Pro-Health showed a significant reduction in enamel wear (between 42% and 54%). Pro-Health also significantly reduced the dentin wear. The toothpastes with SnF2/NaF and TiF4/NaF showed the best results in the reduction of enamel wear (62–70%) as well as TiF4, SnF2, SnF2/NaF, and TiF4/NaF for dentin wear (64–79%) (P<0.05). Therefore, the experimental toothpastes containing both conventional and metal fluoride seem to be promising in reducing tooth wear.


2016 ◽  
Vol 50 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Luiza P.S. Cassiano ◽  
Senda Charone ◽  
Juliana G. Souza ◽  
Ligia C. Leizico ◽  
Juliano P. Pessan ◽  
...  

This study analysed in vitro the effect of milk against dental erosion, considering three factors: the type of milk (bovine whole/fat-free), the presence of different fluoride concentrations and the time of application (before/after erosive challenge). Bovine enamel (n = 15/group) and root dentine (n = 12/group) specimens were submitted to the following treatments: after the first erosive challenge - 0.9% NaCl solution (negative control), whole milk with 0, 2.5, 5.0 and 10.0 ppm F, fat-free milk with 0, 2.5, 5.0 and 10.0 ppm F, and 0.05% NaF solution (positive control); before the first erosive challenge - whole milk with 0, 2.5, 5.0 and 10.0 ppm F, fat-free milk with 0, 2.5, 5.0 and 10.0 ppm F, and 0.05% NaF solution (positive control). Specimens were submitted to demineralisation-remineralisation regimes 4 times/day for 5 days. The response variables were enamel and dentine loss (in micrometres). Data were analysed using Kruskal-Wallis/Dunn's test (p < 0.05). For enamel, whole milk containing 10 ppm F, applied before the erosive challenge, was the most protective treatment, but with no significant difference compared with the same treatment carried out after the erosive challenge. For dentine, whole fluoridated milk (all concentrations, after), fat-free 10 ppm F milk (after, before) and whole milk with or without F (except 2.5 ppm F, all before) significantly reduced dentine erosion. It seems that the presence of fluoride, especially at 10 ppm, is the most important factor in reducing dental erosion.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Alessandra B. Borges ◽  
Carlos R. G. Torres ◽  
Paulo A. B. de Souza ◽  
Taciana M. F. Caneppele ◽  
Luciana F. T. F. Santos ◽  
...  

Thisin vitrostudy evaluated the effect of 35% hydrogen peroxide (HP) bleaching gel modified or not by the addition of calcium and fluoride on enamel susceptibility to erosion. Bovine enamel samples (3 mm in diameter) were divided into four groups (n=15) according to the bleaching agent: control—without bleaching (C); 35% hydrogen peroxide (HP); 35% HP with the addition of 2% calcium gluconate (HP + Ca); 35% HP with the addition of 0.6% sodium fluoride (HP + F). The bleaching gels were applied on the enamel surface for 40 min, and the specimens were subjected to erosive challenge with Sprite Zero and remineralization with artificial saliva for 5 days. Enamel wear was assessed using profilometry. The data were analyzed by ANOVA/ Tukey’s test (P<0.05). There were significant differences among the groups (P=0.009). The most enamel wear was seen for C (3.37±0.80 μm), followed by HP (2.89±0.98 μm) and HP + F (2.72±0.64 μm). HP + Ca (2.31±0.92 μm) was the only group able to significantly reduce enamel erosion compared to C. The application of HP bleaching agent did not increase the enamel susceptibility to erosion. However, the addition of calcium gluconate to the HP gel resulted in reduced susceptibility of the enamel to erosion.


2007 ◽  
Vol 01 (01) ◽  
pp. 010-013 ◽  
Author(s):  
Sílvia Helena de Carvalho Sales-Peres ◽  
Ana Carolina Magalhães ◽  
Maria Aparecida de Andrade Moreira Machado ◽  
Marília Afonso Rabelo Buzalaf

ABSTRACTObjectives: This in vitro study evaluated the capability of different soft drinks (Coca-Cola® -C, Coca- Cola Light® -CL, Guaraná® -G, Pepsi Twist® -P and Sprite Light® -SL) to erode dental enamel, relating the percentage of superficial microhardness change (%SMHC) to concentrations of fluoride and phosphate, buffering capacity and pH of these drinks.Methods: The soft drinks were evaluated in respect to concentration of phosphate and fluoride spectrophotometrically using Fiske, Subarrow method and by specific electrode (Orion 9609), respectively. The pH and the buffering capacity were determined by glass electrode and by estimating of the volume of NaOH necessary to change the pH of the drink in one unit, respectively. One hundred specimens of bovine enamel were randomly assigned to 5 groups of 20 each. They were exposed to 4 cycles of demineralisation in the beverage and remineralisation in artificial saliva. The softening of enamel was evaluated by %SMHC.Results: The mean %SMHC was:C=77.27%, CL= 72.45%, SL=78.43%, G=66.65% and P=67.95%. Comparing the %SMHC promoted by 5 soft drinks, SL = C > CL > P = G (P<.05). There was not significant correlation between %SMHC and the other variables tested for the five drinks (P>>.05)Conclusions: The five soft drinks caused surface softening of enamel (erosion). In respect to the chemical variables tested, despite not statistically significant, the pH seems to have more influence on the erosive potential of these drinks. (Eur J Dent 2007;1:10-13)


2019 ◽  
Vol 44 (5) ◽  
pp. E234-E243 ◽  
Author(s):  
L Al Dehailan ◽  
EA Martinez-Mier ◽  
GJ Eckert ◽  
F Lippert

SUMMARY Most currently marketed fluoride varnishes (FVs) have not been evaluated for their effectiveness in preventing dental caries. The objective of this study was to investigate the anticaries efficacy, measured as fluoride release into artificial saliva (AS); change in surface microhardness of early enamel caries lesions; and enamel fluoride uptake (EFU) of 14 commercially available FVs and two control groups. Bovine enamel specimens (5×5 mm) were prepared and assigned to 18 groups (n=12). Early caries lesions were created in the specimens and characterized using Vickers microhardness (VHNlesion). FV was applied to each group of specimens. Immediately afterward, specimens were incubated in 4 mL of AS for 18 hours, which were collected and renewed every hour for the first six hours. AS samples were analyzed for fluoride using an ion-specific electrode. Specimens were then brushed for 20 seconds with toothpaste slurry and subjected to pH cycling consisting of a four-hour/day acid challenge and one-minute treatments with 1100 ppm F dentifrice for five days. Microhardness was measured following pH cycling (VHNpost). EFU was determined using microbiopsy. Acid resistance (eight-hour demin challenge) was performed after pH cycling, and microhardness was measured (VHNart) and compared with baseline values to test the FV impact after pH cycling. One-way analysis of variance was used for data analysis (α=0.05). FVs differed in their release characteristics (mean ± SD ranged from 14.97 ± 2.38 μg/mL to 0.50 ± 0.15 μg/mL), rehardening capability (mean ± SD ranged from 24.3 ± 15.1 to 11.7 ± 12.7), and ability to deliver fluoride to demineralized lesions (mean ± SD ranged from 3303 ± 789 μg/cm3 to 707 ± 238 μg/cm3). Statistically significant but weak linear associations were found between ΔVHN(post – lesion), EFU, and fluoride release (correlations 0.21-0.36). The results of this study demonstrated that differences in FV composition can affect their efficacy in in vitro conditions.


2019 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Pedro Henrique Cabral Oliveira ◽  
Marcia Regina Cabral Oliveira ◽  
Luiz Henrique Cabral Oliveira ◽  
Ravana Angelini Sfalcin ◽  
Marcelo Mendes Pinto ◽  
...  

This study aimed to evaluate microhardness of a dentifrice containing fluoride and arginine compared to a positive control (fluoride only) and a negative control (no fluoride) on sound and demineralized bovine enamel surfaces. Specimens were randomly assigned to different treatments that included daily pH cycling and brushing three times a day with one of the following dentifrices (n = 8): Neutraçucar (arginine and fluoride), Colgate Total 12 (fluoride) and My First Colgate (no fluoride). Enamel carious lesions were artificially created one week before the beginning of these treatments (demineralized bovine enamel (DE) groups). The same groups were also tested in sound enamel (sound bovine enamel (SE) groups). Microhardness was measured at baseline and after one, two, and five weeks of treatment using a Knoop indenter. Statistical analysis involved two-way Analysis of Variance (ANOVA) and Tukey’s test. After five weeks, both Total 12 and Neutraçucar had increased the microhardness of DE specimens (p < 0.05). Only Neutraçucar had increased the microhardness of the sound enamel after five weeks of treatment. Thus, it could be concluded that arginine-based dentifrices increase the microhardness of sound and demineralized bovine enamel surfaces.


2015 ◽  
Vol 40 (5) ◽  
pp. 492-502 ◽  
Author(s):  
GC Oliveira ◽  
AP Boteon ◽  
FQ Ionta ◽  
MJ Moretto ◽  
HM Honório ◽  
...  

SUMMARY Resin-based materials that show promising effects for preventing the progression of erosion have been studied. This in vitro study evaluated the effects of applying resin-based materials, including resin infiltration, on previously eroded enamel subjected to erosive challenges. The influence of enamel surface etching prior to application of the material was also studied. Bovine enamel blocks were immersed in hydrochloric acid (HCl), 0.01 M (pH 2.3), for 30 seconds in order to form a softened erosion lesion. The blocks were then randomly divided into nine groups (n=12) and treated as follows: C = control without treatment; Hel = pit & fissure resin sealant (Helioseal Clear); Adh = two-step self-etching adhesive system (AdheSe); Tet = two-step conventional adhesive system (Tetric N-bond); and Inf = infiltrant (Icon). The Helno, Adhno, Tetno, and Infno groups received the same materials without (or with no) surface conditioning. The depth of the material's penetration into softened erosion lesions was qualitatively analyzed using reflection and fluorescence confocal microscopy. After application of the materials, the blocks were immersed in HCl for two minutes; this step was followed by immersion in artificial saliva for 120 minutes four times a day for five days (erosive cycling). Both the enamel alteration and material thickness were analyzed using profilometry, and the results were submitted to Kruskal-Wallis and Dunn tests (p&gt;0.05). Images from the confocal microscopy showed minimal penetration of Adh/Adhno and deep penetration of Inf/Infno into the erosive lesions. The groups Hel, Adh, Inf, Tetno, and Infno resulted in the formation of a layer of material over the enamel, which was effective in inhibiting the progression of erosion. In conclusion, the infiltrant, with or without etching, was able to penetrate and protect the enamel against dental erosion. The other resin-based materials, except for the two-step conventional adhesive, were able to penetrate and inhibit the progression of erosive lesions only when they were applied after enamel etching.


2021 ◽  
Vol 7 (7) ◽  
pp. 500
Author(s):  
Anne Caroline Morais Caldeirão ◽  
Heitor Ceolin Araujo ◽  
Laís Salomão Arias ◽  
Wilmer Ramírez Carmona ◽  
Gustavo Porangaba Miranda ◽  
...  

The contribution of different Candida species in oral fungal infections has stimulated the search for more effective therapies. This study assessed the antibiofilm effects of nanocarriers of miconazole (MCZ) or fluconazole (FLZ) on Candida biofilms, and their cytotoxic effects on murine fibroblasts. Three-species biofilms (Candida albicans/Candida glabrata/Candida tropicalis) were formed on 96-well plates, and they were treated with nanocarriers (iron oxide nanoparticles coated with chitosan—“IONPs-CS”) of MCZ or FLZ at 39/78/156 µg/mL; antifungals alone at 156 µg/mL and artificial saliva were tested as positive and negative controls, respectively. Biofilms were analyzed by colony forming units (CFU), biomass, metabolic activity, and structure/viability. The cytotoxicity (L929 cells) of all treatments was determined via 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Data were submitted to one- or two-way ANOVA, followed by Tukey’s or Fisher LSD’s tests (p < 0.05). IONPs-CS-MCZ at 78 µg/mL promoted similar antibiofilm and cytotoxic effects compared with MCZ at 156 µg/mL. In turn, IONPs-CS-FLZ at 156 µg/mL was overall the most effective FLZ antibiofilm treatment, surpassing the effects of FLZ alone; this nanocarrier was also less cytotoxic compared with FLZ alone. It can be concluded that both nanocarriers are more effective alternatives to fight Candida biofilms compared with their respective positive controls in vitro, being a promising alternative for the treatment of oral fungal infections.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Philipp Körner ◽  
Luca Georgis ◽  
Daniel B. Wiedemeier ◽  
Thomas Attin ◽  
Florian J. Wegehaupt

Abstract Background This in-vitro-study aimed to evaluate the potential of different fluoride gels to prevent gastroesophageal reflux induced erosive tooth wear. Methods Surface baseline profiles of a total of 50 bovine enamel specimens [randomly assigned to five groups (G1–5)] were recorded. All specimens were positioned in a custom made artificial oral cavity and perfused with artificial saliva (0.5 ml/min). Reflux was simulated 11 times a day during 12 h by adding HCl (pH 3.0) for 30 s (flow rate 2 ml/min). During the remaining 12 h (overnight), specimens were stored in artificial saliva and brushed twice a day (morning and evening) with a toothbrush and toothpaste slurry (15 brushing strokes). While specimens in the control group (G1) did not receive any further treatment, specimens in G2–5 were coated with different fluoride gels [Elmex Gelée (G2); Paro Amin Fluor Gelée (G3); Paro Fluor Gelée Natriumfluorid (G4); Sensodyne ProSchmelz Fluorid Gelée (G5)] in the evening for 30 s. After 20 days, surface profiles were recorded again and enamel loss was determined by comparing them with the baseline profiles. The results were statistically analysed using one-way analysis of variance (ANOVA) followed by Tukey`s HSD post-hoc test. Results The overall highest mean wear of enamel (9.88 ± 1.73 µm) was observed in the control group (G1), where no fluoride gel was applied. It was significantly higher (p < 0.001) compared to all other groups. G2 (5.03 ± 1.43 µm), G3 (5.47 ± 0.63 µm, p = 0.918) and G4 (5.14 ± 0.82 µm, p > 0.999) showed the overall best protection from hydrochloric acid induced erosion. Enamel wear in G5 (6.64 ± 0.86 µm) was significantly higher compared to G2 (p = 0.028) and G4 (p = 0.047). Conclusions After 20 days of daily application, all investigated fluoride gels are able to significantly reduce gastroesophageal reflux induced loss of enamel.


Sign in / Sign up

Export Citation Format

Share Document