The Study of Cerebral Blood Flow Variations during Brain Metastasis Radiotherapy

Author(s):  
Chuanke Hou ◽  
Guanzhong Gong ◽  
Lizhen Wang ◽  
Ya Su ◽  
Jie Lu ◽  
...  

Purpose: To investigate the cerebral blood flow (CBF) variations during brain metastases (BMs) radiotherapy (RT) applying with MR 3D-arterial spin labeling (ASL). Materials and Methods: A total of 26 BMs patients with 54 tumors were retrospectively enrolled. MR examinations were performed before and during RT (30-50 Gy) with a total dose of 36-60 Gy (12-30 fractions) including contrast-enhanced T1-weighted, T2 Flair and 3D-ASL images. The relationship between CBF changes and the largest cross-sectional area changes in BMs was investigated. And CBF changes in BMs, normal brain tissue, and peritumoral edema areas were analyzed under different dose gradients that was divided into 10 Gy intervals. Results: The largest cross-sectional areas and CBF of 54 BMs decreased by 26.46% and 29.64% respectively during RT (P<0.05), but there was no correlation between the two changes (P>0.05). The rates of CBF decrease in BMs were 33.75%, 24.61% and 27.55% at 30-40, 40-50 and >50 Gy, respectively (P<0.05). In normal brain tissue with dose gradients of 0-10, 10-20, 20-30, 30-40, 40-50 and > 50 Gy, the CBF decreased by 7.65%, 11.12%, 18.42%, 20.23%, 19.79% and 17.89%, respectively (P <0.05). The CBF decreases reached a maximum at 30-40 Gy in normal brain tissue as well as BMs. In contrast, the CBF decreases of peritumoral edema areas increased as the dose gradients increased. Moreover, the CBF changes of BMs were more notable than those in normal brain tissue and peritumoral edema areas. Conclusion: CBF changes can be feasibly assessed in different brain regions during RT based on 3D-ASL. The changes should be considered as a critical factor to determine the personal radiation dose for BMs, normal brain tissue and peritumoral edema areas.

2020 ◽  
Author(s):  
Chuanke Hou ◽  
Guanzhong Gong ◽  
Lizhen Wang ◽  
Ya Su ◽  
Jie Lu ◽  
...  

Abstract Brackground: Changes of cereberal blood flow in different brain regions of patients with brain metastases after radiotherapy are worth exploring. This study aims to investigate the radiation dose range of normal brain tissue and tumor target area by evaluating the cerebral blood flow(CBF) for brain metastases (BMs) patients applying with 3D arterial spin labeling (ASL).Methods: A total of 26 patients harboring 54 BMs treated with radiotherapy (RT) were imaged with magnetic resonance (MR) before and 30-40Gy post RT. The high signal area of BMs on enhanced T1-weighted images (T1WI), normal brain tissue, and peritumoral edema region were defined as regions of interest (ROIs). Changes and correlation of largest cross-sectional area and maximum CBF in BMs before and after RT were analyzed. Maximum CBF change in the three ROIs under different gradients created by thresholding the individual dose maps at 10 Gy steps were assessed.Results: In terms of 54 BMs, a significant decrease of CBF of 29.64% (P<0.05) compared to largest cross-sectional area of 26.46% (P<0.05). The decrease of CBF was more pronounced for 30-40 Gy (33.75%) than for 40-50Gy and >50Gy (24.61% and 27.55%). In normal brain tissue with dose gradients of 30-40Gy, CBF decreased to the maximum, 20.23% (P<0.05),which was similar to BMs. In contrast, the decrement rate of CBF in the peritumoral edema region increased as the dose gradients increased.Conclusions: CBF decreased significantly during the course of RT. According to CBF variations, the dose to the normal brain tissue should be controlled below 30 Gy as much as possible, whereas tumor with high perfusion and peritumoral edema region should be given a higher dose.


1996 ◽  
Vol 36 (10) ◽  
pp. 709-715 ◽  
Author(s):  
Yoshiya NAKAYAMA ◽  
Akira TANAKA ◽  
Shigehiko KUMATE ◽  
Shinya YOSHINAGA

1977 ◽  
Vol 47 (5) ◽  
pp. 699-712 ◽  
Author(s):  
Erna M. Enevoldsen ◽  
Finn Taagehøj Jensen

✓ Bicompartmental analysis for the calculation of regional cerebral blood flow (rCBF) from 133Xe clearance in brain tissue has not been thoroughly explored in clinical studies. Most authors rely either on the average rCBF obtained by height/area analysis of the clearance curves or on the initial-slope flow index. Possibly the reason is that the validity of the bimodal flow distribution in abnormal brain tissue is considered questionable. In the present study, bicompartmental analysis, performed by a least-square computerized iterative approach, was used in the calculation of the flow and weight of the tissue of the brain of patients with severe head injuries. The analysis was found to give important information of the nature and course of the brain lesions even if the clearance curves did not have the normal bi-exponential shape, provided the results obtained were properly interpreted. In such cases, the values of the flow and relative weight could not be taken as flow and weight values of gray and white matter, but rather as indices of fast and slower flow components. The interpretation of the results was based on the identification of three types of 13-minute clearance curves, each being characteristic of a type of brain lesion. The clearance curves from fairly normal brain tissue appeared to be bi-exponential; curves from areas of severe cortical contusion had, in addition, an initial and rapid “third” component, a tissue peak, whereas curves from severely edematous brain tissue approached the monoexponential shape.


2010 ◽  
Vol 112 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Mads Rasmussen ◽  
Niels Juul ◽  
Søren M. Christensen ◽  
Kristjana Y. Jónsdóttir ◽  
Carsten Gyldensted ◽  
...  

Background The regional cerebral blood flow (CBF) response to propofol and indomethacin may be abnormal in patients with brain tumors. First, the authors tested the hypothesis that during propofol anesthesia alone and combined with indomethacin, changes in CBF, cerebral blood volume (CBV), and plasma mean transit time (MTT) differ in the peritumoral tissue compared with the contralateral normal brain region. Second, the authors tested the hypothesis that CBF and CBV are reduced and MTT is prolonged, in both regions during propofol anesthesia and indomethacin administration compared with propofol alone. Methods The authors studied eight patients subjected to craniotomy under propofol-fentanyl anesthesia for supratentorial brain tumors. Magnetic resonance imaging, including perfusion- and diffusion-weighted and structural sequences, was performed (1) on the day before surgery, (2) before and (3) after administration of indomethacin in the propofol-fentanyl anesthetized patient, and (4) 2 days after surgery. Maps of CBF, CBV, and MTT were calculated. The regions of interest were peritumoral gray matter and opposite contralateral gray matter. Analysis of variance was used to analyze flow data. Results Propofol anesthesia was associated with a median 32% (range, 3-61%) and 47% (range, 17-67%) reduction in CBF in the peritumoral and contralateral regions, respectively.The interaction between intervention with propofol and indomethacin and region of interest was not significant for any flow modalities. Neither intervention nor region was significant for MTT, CBF, and CBV (P &gt; 0.05). Conclusion The CBF, CBV, and MTT responses to propofol and indomethacin are not different in the peritumoral region compared with contralateral brain tissue. Indomethacin did not further influence regional CBF, CBV, and MTT during propofol anesthesia.


2010 ◽  
Vol 21 (1) ◽  
pp. 233-244 ◽  
Author(s):  
A. Pfefferbaum ◽  
S. Chanraud ◽  
A.-L. Pitel ◽  
E. Muller-Oehring ◽  
A. Shankaranarayanan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariano Guardia Clausi ◽  
Alexander M. Stessin ◽  
Zirun Zhao ◽  
Stella E. Tsirka ◽  
Samuel Ryu

AbstractThe efficacy of combining radiation therapy with immune checkpoint inhibitor blockade to treat brain tumors is currently the subject of multiple investigations and holds significant therapeutic promise. However, the long-term effects of this combination therapy on the normal brain tissue are unknown. Here, we examined mice that were intracranially implanted with murine glioma cell line and became long-term survivors after treatment with a combination of 10 Gy cranial irradiation (RT) and anti-PD-1 checkpoint blockade (aPD-1). Post-mortem analysis of the cerebral hemisphere contralateral to tumor implantation showed complete abolishment of hippocampal neurogenesis, but neural stem cells were well preserved in subventricular zone. In addition, we observed a drastic reduction in the number of mature oligodendrocytes in the subcortical white matter. Importantly, this observation was evident specifically in the combined (RT + aPD-1) treatment group but not in the single treatment arm of either RT alone or aPD-1 alone. Elimination of microglia with a small molecule inhibitor of colony stimulated factor-1 receptor (PLX5622) prevented the loss of mature oligodendrocytes. These results identify for the first time a unique pattern of normal tissue changes in the brain secondary to combination treatment with radiotherapy and immunotherapy. The results also suggest a role for microglia as key mediators of the adverse treatment effect.


1989 ◽  
Vol 9 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Michihiro Kirikae ◽  
Mirko Diksic ◽  
Y. Lucas Yamamoto

We examined the rate of glucose utilization and the rate of valine incorporation into proteins using 2-[18F]fluoro-2-deoxyglucose and L-[1-14C]-valine in a rat brain tumor model by quantitative double-tracer autoradiography. We found that in the implanted tumor the rate of valine incorporation into proteins was about 22 times and the rate of glucose utilization was about 1.5 times that in the contralateral cortex. (In the ipsilateral cortex, the tumor had a profound effect on glucose utilization but no effect on the rate of valine incorporation into proteins.) Our findings suggest that it is more useful to measure protein synthesis than glucose utilization to assess the effectiveness of antitumor agents and their toxicity to normal brain tissue. We compared two methods to estimate the rate of valine incorporation: “kinetic” (quantitation done using an operational equation and the average brain rate coefficients) and “washed slices” (unbound labeled valine removed by washing brain slices in 10% thrichloroacetic acid). The results were the same using either method. It would seem that the kinetic method can thus be used for quantitative measurement of protein synthesis in brain tumors and normal brain tissue using [11C]-valine with positron emission tomography.


1987 ◽  
Vol 11 (2) ◽  
pp. 208-213 ◽  
Author(s):  
Mats Bergström ◽  
Kaj Ericson ◽  
Lars Hagenfeldt ◽  
Mikael Mosskin ◽  
Hans von Holst ◽  
...  

1982 ◽  
Vol 2 (1) ◽  
pp. 25-32 ◽  
Author(s):  
K.-A. Hossmann ◽  
I. Niebuhr ◽  
M. Tamura

Experimental brain tumors were produced in rats by intracerebral implantation of a neoplastic glial cell clone. Within 2–6 weeks, spherical brain tumors developed at the implantation site with a mean diameter of 6 mm. Local blood flow and local glucose utilization were measured under light barbiturate anesthesia by quantitative autoradiography in the tumor and peritumoral brain tissue. In solid parts of the tumor, blood flow was 57.8 ± 2.0 ml/100 g/min (mean ± SE), and glucose utilization was 87.2 ± 5.8 μmol/100 g/min, respectively. In necrotic regions, flow and glucose utilization were zero. In peritumoral brain tissue of the ipsilateral hemisphere blood flow was reduced by 13–23%, as compared to homologous regions of the opposite side, the greatest decrease being recorded in the ipsilateral thalamus. Flow in the opposite hemisphere was of the same order of magnitude as in normal control rats. Glucose consumption, in contrast, was distinctly reduced in both hemispheres: in the cortex and putamen, it was 40–50% lower than in normal controls. The following conclusions are drawn: (1) during tumor development the high glucose consumption in the tumor tissue is not coupled to an equal increase in blood flow; (2) peritumoral cerebral blood flow decreases on the ipsilateral but not on the contralateral side, and (3) the metabolic rate of glucose is distinctly inhibited in both hemispheres of tumor-bearing animals. The dissociation between blood flow and metabolism suggests that metabolic inhibition is not the consequence of a diaschitic depression of functional activity.


Sign in / Sign up

Export Citation Format

Share Document