scholarly journals Protector role of intraocular lenses under artificial light conditions

2021 ◽  
Author(s):  
Andrés Fernández-Vega Cueto ◽  
Susana del Olmo-Aguado ◽  
Eva García-Pérez ◽  
Ignacio Rodriguez-Uña ◽  
Luis Fernández-Vega Cueto ◽  
...  

Introduction: The aim of this work is to analyse, in an in vitro model, the possible protective effects of ultraviolet- (UV-) or UV/ blue-filtering intraocular lens (IOLs) under LED lighting conditions. Methods: 10 models of IOLs were evaluated. Light transmission spectrum was recorded from 300 to 800 nm, in steps of 1 nm. Photodamage in vitro model was induced in ARPE-19 cells by blue LED light (465-475 nm). Changes in cell viability and oxidative stress variables were studied to assess the protective effect of IOLs. Results: UV/blue-filtering IOLs models block blue light spectrum in different proportion and UV-filtering IOLs blocking wavelength below 400 nm. However, in vitro study under blue LED light exposure does not show protective effects related with mitochondrial dysfunction and oxidative stress of UV/blue-filtering IOLs. Conclusions: The current in vitro study suggest that UV/blue filtering IOLs are not useful in terms of photoprotection in artificial light conditions. The results obtained indicate that it is needed to give attention to other IOLs parameters besides the type of filter, as it seems they could have influence also protective role.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chang Liu ◽  
Bozhao Li ◽  
Qi Yan ◽  
Shaopeng Niu ◽  
Yiding Zhao ◽  
...  

Ischemic heart disease (IHD) is a cardiovascular disease with high fatality rate, and its pathogenesis is closely related to oxidative stress. Reactive oxygen species (ROS) in oxidative stress can lead to myocardial ischemia (MI) injury in many ways. Therefore, the application of antioxidants may be an effective way to prevent IHD. In recent years, glutathione peroxidase 4 (GPx4) has received increasing attention due to its antioxidant effect. In a previous study, we used the new chimeric tRNAUTuT6 to express highly active recombinant human GPx4 (rhGPx4) in amber-less Escherichia coli. In this study, we established an isoproterenol- (ISO-) induced MI injury model in rats and an in vitro model to research the protective effect and mechanism of rhGPx4 on MI injury. The results showed that rhGPx4 could reduce the area of myocardial infarction and ameliorate the pathological injury of heart tissue, significantly reduce ISO-induced abnormalities on electrocardiogram (ECG) and cardiac serum biomarkers, protect mitochondrial function, and attenuate cardiac oxidative stress injury. In an in vitro model, the results also confirmed that rhGPx4 could inhibit ISO-induced oxidative stress injury and cardiomyocyte apoptosis. The mechanism of action of rhGPx4 involves not only the inhibition of lipid peroxidation by eliminating ROS but also keeping a normal level of endogenous antioxidant enzymes by eliminating ROS, thereby preventing oxidative stress injury in cardiomyocytes. Additionally, rhGPx4 could inhibit cardiomyocyte apoptosis through a mitochondria-dependent pathway. In short, rhGPx4, a recombinant antioxidant enzyme, can play an important role in the prevention of IHD and may have great potential for application.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Hongjie Yuan ◽  
Shibin Du ◽  
Youliang Deng ◽  
Xiaoqing Xu ◽  
Qian Zhang ◽  
...  

Abstract Background: MicroRNA can regulate gene expression, and participate in multiple vital activities, such as inflammation, oxidative stress epigenetic modification, cell proliferation, and apoptosis. It plays an important role in the genesis and development of cardiovascular disease. Objective: To assess the role of microRNA-208a in ketamine-induced cardiotoxicity. Methods: All rats were randomly selected into two groups: sham and model groups. After fixed, all rats in the model group was intraperitoneally (IP) injected with 100 mg/kg of ketamine. Heart samples were stained with HE assay. Total RNAs from serum were used to hybridize with the SurePrint G3 Rat Whole Genome GE 8×60 K Microarray G4858A platform. Results: In the rat model with ketamine-induced cardiotoxicity, microRNA-208a expression was increased. Then, over-expression of microRNA-208a increased inflammation and oxidative stress in vitro model. However, down-regulation of microRNA-208a decreased inflammation and oxidative stress in vitro model. Over-expression of microRNA-208a suppressed CHD9 and Notch1, and induced p65 protein expression in vitro model. Overexpression of CHD9 reduced the effects of microRNA-208a on inflammation and oxidative stress in heart cell through Notch/p65 signal pathways. Notch1 activation reduced the effects of microRNA-208a on inflammation and oxidative stress in heart cell through p65 signal pathways. Conclusion: MicroRNA-208a may be a potential biomarker for ketamine-induced cardiotoxicity through inflammation and oxidative stress by Notch/NF-κB signal pathways by CHD9.


2011 ◽  
Vol 60 (07) ◽  
pp. 459-465
Author(s):  
Brigitte Sturm ◽  
Hannes Steinkellner ◽  
Nina Ternes ◽  
Hans Goldenberg ◽  
Barbara Scheiber-Mojdehkar

2016 ◽  
Vol 35 (12) ◽  
pp. 1252-1263 ◽  
Author(s):  
SS Palabiyik ◽  
E Karakus ◽  
Z Halici ◽  
E Cadirci ◽  
Y Bayir ◽  
...  

Acetaminophen (APAP) overdose could induce liver damage and lead to acute liver failure. The treatment of APAP overdoses could be improved by new therapeutic strategies. Thymus spp., which has many beneficial effects and has been used in folk medicine, is one such potential strategy. In the present study, the hepatoprotective activity of the main constituents of Thymus spp., carvacrol and thymol, were evaluated in light of APAP-induced hepatotoxicity. We hoped to understand the hepatoprotective mechanism of these agents on the antioxidant system and pro-inflammatory cytokines in vitro. Dose-dependent effects of thymol and carvacrol (25, 50, and 100 µM) were tested on cultured HepG2 cells. N-Acetylcysteine (NAC) was tested as positive control. We showed that APAP inhibited HepG2 cell growth by inducing inflammation and oxidative stress. Incubating APAP-exposed HepG2 cells with carvacrol and thymol for 24 h ameliorated this inflammation and oxidative stress. We also evaluated alanine transaminase and lactate dehydrogenase levels of HepG2 cells. We found that thymol and carvacrol protected against APAP-induced toxicity in HepG2 cells by increasing antioxidant activity and reducing pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β. Taking together high-dose thymol and carvacrol treatment has an effect close to NAC treatment in APAP toxicity, but thymol has better treatment effect than carvacrol.


2018 ◽  
Vol 3 (3) ◽  
pp. 1-10 ◽  
Author(s):  
Madhuravasal Krishnan Janani ◽  
Venkatakrishnan Jaichandran ◽  
Hajib Narahari Rao Madhavan ◽  
Lingam Vijaya ◽  
Ronnie Jacob George ◽  
...  

Purpose: To evaluate the effect of lignocaine on growth and apoptosis indication of primary human Tenon’s capsule fibroblast (HTFs) in an in vitro model. Patients and Methods: Tenon’s capsule tissue obtained from patients undergoing trabeculectomy were grown in cell culture medium. The effect of different concentrations of lignocaine (0.5, 1.0, 1.5, and 2%) on the morphology and growth of the fibroblasts was studied using microscopy, cell viability, and proliferation assay, and apoptosis was detected using the FITC Annexin V Apoptosis Kit. Results: Morphological changes similar to those of apoptotic cells, including cytoplasmic vacuolation, shrinkage, and rounding were visualized in the cells treated with concentrations greater than 1.0% (i.e., 1.5, 2.0%). Though proliferation inhibition was found with all four concentrations (0.5–2.0%), the viability of cells decreased from 1.0% lignocaine. Conclusion: 0.5% lignocaine prevents proliferation of fibroblasts without causing apoptosis in vitro.


Author(s):  
Olga Verle ◽  
Oleg Ostrovskiy ◽  
Valerian Verovskiy ◽  
Galina Dudchenko

In the framework of the study, the degree of defragmentation of DNA by the DNA-comet method is evaluated when exposed to the cell culture of hydrogen peroxide (H2O2), and an in vitro model is developed to evaluate the antioxidant activity of new pharmacological agents. The results of working with cell lines show that the percentage of damage to the genetic material of cells of intact samples does not greatly vary from the method of removing the cellular monolayer from the culture plastic. Concerning the effect of H2O2 as an inducer of oxidative stress on DNA cell damage, the optimal level of DNA defragmentation has been modeled for subsequent studies of the protective action of antioxidants.


Sign in / Sign up

Export Citation Format

Share Document