scholarly journals The calculation of the field of an antenna located near the human head

2021 ◽  
Vol 10 (6) ◽  
pp. 3282-3288
Author(s):  
Hamood Shehab Hamid ◽  
Raad Farhood Chisab

In this work, a numerical calculation was carried out in one of the universal programs for automatic electro-dynamic design. The calculation is aimed at obtaining numerical values for specific absorbed power (SAR). It is the SAR value that can be used to determine the effect of the antenna of a wireless device on biological objects; the dipole parameters will be selected for GSM1800. Investigation of the influence of distance to a cell phone on radiation shows that absorbed in the head of a person the effect of electromagnetic radiation on the brain decreases by three times this is a very important result the SAR value has decreased by almost three times it is acceptable results.

2009 ◽  
Vol 43 (6) ◽  
pp. 249-254
Author(s):  
L. D. Usanova ◽  
A. D. Usanova ◽  
A. V. Skripal’

Author(s):  
V.E. Drach ◽  
A.A. Litvinenko ◽  
V.A. Solovyev

Communication systems are developing at an incredible speed. This also applies to mobile communication systems, which today are among the most important telecommunication systems operating at microwave frequencies. Working mobile phones are sources of non-ionizing radiation near the head or body. Despite the fact that the average person spends several conversations on a cell phone every day, the issue of the impact of radiation on health has not yet been fully studied. Simulate the effect of cell phone radiation on biological tissues of the human body, in particular on the head. Two computer models of the human head have been built. Computer simulation of the effect of cell phone radiation on biological tissues of the human body has been performed. An important feature of the model is the presence of layers with different parameters. The layers correspond to real biological tissues (skin, adipose tissue, muscle, skull and brain). A study of the field distribution in the volume of the human head, induced by a working mobile phone, is presented. The specific absorption coefficient was determined. Shown is the thermal effect caused by exposure to radiation from a mobile phone. In the case of the multilayer model, lower values of the specific absorption coefficient were obtained, which can be explained by the use of a more accurate computer model. It became possible to graphically represent the propagation of electromagnetic waves through the head model. The temperature distribution over the surface and in the volume of the human head is illustrated.


Author(s):  
Hannah R. Brown ◽  
Tammy L. Donato ◽  
Halldor Thormar

Measles virus specific immunoglobulin G (IgG) has been found in the brains of patients with subacute sclerosing panencephalitis (SSPE), a slowly progressing disease of the central nervous system (CNS) in children. IgG/albumin ratios indicate that the antibodies are synthesized within the CNS. Using the ferret as an animal model to study the disease, we have been attempting to localize the Ig's in the brains of animals inoculated with a cell associated strain of SSPE. In an earlier report, preliminary results using Protein A conjugated to horseradish peroxidase (PrAPx) (Dynatech Diagnostics Inc., South Windham, ME.) to detect antibodies revealed the presence of immunoglobulin mainly in antibody-producing plasma cells in inflammatory lesions and not in infected brain cells.In the present experiment we studied the brain of an SSPE ferret with neutralizing antibody titers of 1:1024 in serum and 1:512 in CSF at time of sacrifice 7 months after i.c. inoculation with SSPE measles virus-infected cells. The animal was perfused with saline and portions of the brain and spinal cord were immersed in periodate-lysine-paraformaldehyde (P-L-P) fixative. The ferret was not perfused with fixative because parts of the brain were used for virus isolation.


2011 ◽  
Vol 20 (1) ◽  
pp. 34-37 ◽  
Author(s):  
David Chapple

Abstract Over the past 20 years, there have been many advances in the computer industry as well as in augmentative and alternative communication (AAC) devices. Computers are becoming more compact and have multiple purposes, such as the iPhone, which is a cell phone, mp3 player, and an Internet browser. AAC devices also have evolved to become multi-purpose devices; the most sophisticated devices have functionality similar to the iPhone and iPod. Recently, the idea of having the iPhone and iPad as a communication device was initiated with the development of language applications specifically for this format. It might be true that this idea could become the future of AAC devices; however, there are major access issues to overcome before the idea is a reality. This article will chronicle advancements in AAC devices, specifically on access methods, throughout the years, towards the transition to handheld devices. The newest technologies hold much promise with both features and affordability factors being highly attractive. Yet, these technologies must be made to incorporate alternate access if they are to meet their fullest potential as AAC tools.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahiro Morito ◽  
Ryuichi Harada ◽  
Ren Iwata ◽  
Yiqing Du ◽  
Nobuyuki Okamura ◽  
...  

AbstractBrain positron emission tomography (PET) imaging with radiolabelled proteins is an emerging concept that potentially enables visualization of unique molecular targets in the brain. However, the pharmacokinetics and protein radiolabelling methods remain challenging. Here, we report the performance of an engineered, blood–brain barrier (BBB)-permeable affibody molecule that exhibits rapid clearance from the brain, which was radiolabelled using a unique fluorine-18 labelling method, a cell-free protein radiosynthesis (CFPRS) system. AS69, a small (14 kDa) dimeric affibody molecule that binds to the monomeric and oligomeric states of α-synuclein, was newly designed for brain delivery with an apolipoprotein E (ApoE)-derived brain shuttle peptide as AS69-ApoE (22 kDa). The radiolabelled products 18F-AS69 and 18F-AS69-ApoE were successfully synthesised using the CFPRS system. Notably, 18F-AS69-ApoE showed higher BBB permeability than 18F-AS69 in an ex vivo study at 10 and 30 min post injection and was partially cleared from the brain at 120 min post injection. These results suggest that small, a brain shuttle peptide-fused fluorine-18 labelled protein binders can potentially be utilised for brain molecular imaging.


Sign in / Sign up

Export Citation Format

Share Document