scholarly journals Influence of low power consumption on IEEE 802.15.4 in wireless networks performance

2020 ◽  
Vol 9 (1) ◽  
pp. 205-211
Author(s):  
A. Z. Yonis

IEEE 802.15.4 standard defines both media access control (MAC) and physical (PHY) layer protocols for low power consumption, low peak data rate, and low cost applications. Nowadays the most important feature of IEEE 802.15.4 is maximizing battery life. This paper is focusing how to achieve low average power consumption through assuming that the amount of data transmitted is short and that it is transmitted infrequently so as to keep a low duty cycle. The outcomes demonstrate that the phase shift estimation of Offset quadrature phase-shift keying (OQPSK) modulation has no impact on bit error rate (BER) if it is identical in the transmitter as same as in the receiver.

2015 ◽  
Vol 785 ◽  
pp. 724-728 ◽  
Author(s):  
Muhammad Bilal Sarwar ◽  
Perumal Nallagownden ◽  
Zuhairi Baharudin ◽  
Mohana Sundaram Muthuvalu

The aim of this research is to develop a low power, low cost and energy efficient transceiver model which is integrated with programmable microcontroller and ZigBee transponder. A combination of programmable microcontroller with ZigBee transponder is used to control the transceiver module with computer commands. It has b een simulated for transmitting and receiving the communication signals from any movable device with more efficiently and use low power consumption. ZigBee Transponder is preferable as compared to radio frequency identification (RFID) due to IEEE 802.15.4 standard that promises stable data transmission with low power consumption device and having higher network flexibility. PIC 16F877A programmable microcontroller with coding in Mikro C software is simulated and used with computer control instructions. Series of experiments has been conducted to ensure the stability and low power consumption of this model.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

2018 ◽  
Vol 15 (6) ◽  
pp. 792-803
Author(s):  
Sudhakar Jyothula

PurposeThe purpose of this paper is to design a low power clock gating technique using Galeor approach by assimilated with replica path pulse triggered flip flop (RP-PTFF).Design/methodology/approachIn the present scenario, the inclination of battery for portable devices has been increasing tremendously. Therefore, battery life has become an essential element for portable devices. To increase the battery life of portable devices such as communication devices, these have to be made with low power requirements. Hence, power consumption is one of the main issues in CMOS design. To reap a low-power battery with optimum delay constraints, a new methodology is proposed by using the advantages of a low leakage GALEOR approach. By integrating the proposed GALEOR technique with conventional PTFFs, a reduction in power consumption is achieved.FindingsThe design was implemented in mentor graphics EDA tools with 130 nm technology, and the proposed technique is compared with existing conventional PTFFs in terms of power consumption. The average power consumed by the proposed technique (RP-PTFF clock gating with the GALEOR technique) is reduced to 47 per cent compared to conventional PTFF for 100 per cent switching activity.Originality/valueThe study demonstrates that RP-PTFF with clock gating using the GALEOR approach is a design that is superior to the conventional PTFFs.


2020 ◽  
Vol 2 (9) ◽  
pp. 4172-4178
Author(s):  
Matias Kalaswad ◽  
Bruce Zhang ◽  
Xuejing Wang ◽  
Han Wang ◽  
Xingyao Gao ◽  
...  

Integration of highly anisotropic multiferroic thin films on silicon substrates is a critical step towards low-cost devices, especially high-speed and low-power consumption memories.


2011 ◽  
Vol 135-136 ◽  
pp. 886-892
Author(s):  
Wen Hui Chen ◽  
Xin Xi Meng ◽  
Xiao Min Liu

In order to process and analyze the signal of frequency modulated continuous wave (FMCW) radar, a radar semi-physical simulation(RSPS) system based on STM32F103VE6 chip is designed in this paper. By designing the hardware and software of system, the RSPS system can process the radar signal, detect the target, verify the data process algorithm and display the result on TFT-LCD screen. In addition, the collected data can be uploaded to PC by RS-232 interfaces which improves the reliability, stability and practicability of system. The waveform and spectrum maps are utilized to show the feasibility of RSPS system in analysing FMCW radar signal. Experimental results show that this system has many advantages, such as multifunction, low power consumption and low cost.


2012 ◽  
Vol 198-199 ◽  
pp. 1603-1608
Author(s):  
Qing Hua Shang ◽  
Ping Liu

Wireless technology has walked into the People's Daily life, Bluetooth technology comes to the fore in so many wireless technologies with its low power consumption, low cost and other characteristics. Bluetooth technology is used widely, we can see it in mobile phones or in our cars, it seems that Bluetooth technology has penetrated into every aspect of our lives. Even so, the combination of Bluetooth technology and fixed telephone still has a very big development space. If the stability of the fixed telephone combined with the flexible of Bluetooth technology, it will give the life of people a lot of convenience. This paper will introduces the Bluetooth hands free system for fixed telephone, it is such a product that it will make Bluetooth technology and common fixed phone combined, and make it a reality that people can use common Bluetooth headset to answer or call a fixed telephone.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9681
Author(s):  
Akira Yoshioka ◽  
Akira Shimizu ◽  
Hiroyuki Oguma ◽  
Nao Kumada ◽  
Keita Fukasawa ◽  
...  

Although dragonflies are excellent environmental indicators for monitoring terrestrial water ecosystems, automatic monitoring techniques using digital tools are limited. We designed a novel camera trapping system with an original dragonfly detector based on the hypothesis that perching dragonflies can be automatically detected using inexpensive and energy-saving photosensors built in a perch-like structure. A trial version of the camera trap was developed and evaluated in a case study targeting red dragonflies (Sympetrum spp.) in Japan. During an approximately 2-month period, the detector successfully detected Sympetrum dragonflies while using extremely low power consumption (less than 5 mW). Furthermore, a short-term field experiment using time-lapse cameras for validation at three locations indicated that the detection accuracy was sufficient for practical applications. The frequency of false positive detection ranged from 17 to 51 over an approximately 2-day period. The detection sensitivities were 0.67 and 1.0 at two locations, where a time-lapse camera confirmed that Sympetrum dragonflies perched on the trap more than once. However, the correspondence between the detection frequency by the camera trap and the abundance of Sympetrum dragonflies determined by field observations conducted in parallel was low when the dragonfly density was relatively high. Despite the potential for improvements in our camera trap and its application to the quantitative monitoring of dragonflies, the low cost and low power consumption of the detector make it a promising tool.


Sign in / Sign up

Export Citation Format

Share Document