scholarly journals A four-element UWB MIMO antenna using SRRs for application in satellite communications

Author(s):  
Chafai Abdelhamid ◽  
Hedi Sakli ◽  
Nizar Sakli

This paper proposes a method for designing a new <em>ultra wide band</em> (UWB) multiple-input multiple-output (MIMO) antenna with two and four elements. First we presented an ultra-wide band antenna we studied these performances. Then, we studied the application of metamaterials to the design of MIMO antennas for miniaturization and the performance of antennas, in order to guarantee the proper functioning of the MIMO system with a much reduced separation distance between the radiating elements (λ/12), where the coupling can be very weak. The application of these circular double ring SRRs materials on the front plan of the antenna has contributed to the increasing of the antenna performance is studied in terms of S-Parameters, efficiency, diversity gain (DG), radiation properties and envelop correlation coefficient (ECC). It offers advantages such as the reduction of weight and congestion that is beneficial for their integration into satellite communications systems.

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1321
Author(s):  
Amjad Iqbal ◽  
Ahsan Altaf ◽  
Mujeeb Abdullah ◽  
Mohammad Alibakhshikenari ◽  
Ernesto Limiti ◽  
...  

This paper presents an isolation enhancement of two closely packed multiple-input multiple-output (MIMO) antenna system using a modified U-shaped resonator. The modified U-shaped resonator is placed between two closely packed radiating elements resonating at 5.4 GHz with an edge to edge separation distance of 5.82 mm (λ∘/10). Through careful adjustment of parametric modelling, the isolation level of −23 dB among the densely packed elements is achieved. The coupling behaviour of the MIMO elements is analysed by accurately designing the equivalent circuit model in each step. The antenna performance is realized in the presence and absence of decoupling structure, and the results shows negligible effects on the antenna performance apart from mutual coupling. The simple assembly of the proposed modified U-shaped isolating structure makes it useful for several linked applications. The proposed decoupling structure is compact in nature, suppress the undesirable coupling generated by surface wave and nearby fields, and is easy to fabricate.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1559
Author(s):  
Adam R. H. Alhawari ◽  
Tale Saeidi ◽  
Abdulkarem Hussein Mohammed Almawgani ◽  
Ayman Taher Hindi ◽  
Hisham Alghamdi ◽  
...  

A low-profile Multiple Input Multiple Output (MIMO) antenna showing dual polarization, low mutual coupling, and acceptable diversity gain is presented by this paper. The antenna introduces the requirements of fifth generation (5G) and the satellite communications. A horizontally (4.8–31 GHz) and vertically polarized (7.6–37 GHz) modified antipodal Vivaldi antennas are simulated, fabricated, and integrated, and then their characteristics are examined. An ultra-wideband (UWB) at working bandwidths of 3.7–3.85 GHz and 5–40 GHz are achieved. Low mutual coupling of less than −22 dB is achieved after loading the antenna with cross-curves, staircase meander line, and integration of the metamaterial elements. The antennas are designed on a denim textile substrate with = 1.4 and h= 0.5 mm. A conductive textile called ShieldIt is utilized as conductor with conductivity of 1.8 × 104. After optimizing the proposed UWB-MIMO antenna’s characteristics, it is increased to four elements positioned at the four corners of a denim textile substrate to be employed as a UWB-MIMO antenna for handset communications, 5G, Ka and Ku band, and satellite communications (X-band). The proposed eight port UWB-MIMO antenna has a maximum gain of 10.7 dBi, 98% radiation efficiency, less than 0.01 ECC, and acceptable diversity gain. Afterwards, the eight-ports antenna performance is examined on a simulated real voxel hand and chest. Then, it is evaluated and compared on physical hand and chest of body. Evidently, the simulated and measured results show good agreement between them. The proposed UWB-MIMO antenna offers a compact and flexible design, which is suitably wearable for 5G and satellite communications applications.


2020 ◽  
Vol 10 (2) ◽  
pp. 5492-5495 ◽  
Author(s):  
H. Alsaif

A new compact 2×2 Multiple Input Multiple Output (MIMO) antenna is presented in this paper, suitable for the new wireless communications. The proposed design also covers the complete ultra-wideband for short wireless systems. The antenna system is characterized by a super wideband covering radio frequency (RF) band starting from 2.97GHz to 19.82GHz. The MIMO system contains two ship-shaped monopoles with trimmed edges. These antennas are printed on a single layer of Rogers Duroid RT5880Lz with relative permittivity εr=1.96 and loss tangent δ of 0.0009. The overall size of the MIMO system is 20mm×47mm×1.6mm. The peak-achieved gain is 8.12dB with nearly omni-directional isotropic far field patterns. The design and simulation has been performed via an industrial simulation code.


2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.


2019 ◽  
Vol 57 (2) ◽  
pp. 223
Author(s):  
Hoa Nguyen Thi Quynh ◽  
Sy Tuan Tran ◽  
Huu Lam Phan ◽  
Duy Tung Phan

A compact three-port metamaterial multiple-input-multiple-output (MIMO) antenna using complementary split-ring resonator (CSRR) loaded ground have demonstrated in order to miniaturize the size and improve the antenna performance. The antenna is designed on FR4 material and simulated by HFSS software. By loading CSRRs in the ground plane, the size reduction of 77% of the individual patch antenna element is achieved, which appeared to be the major reason for the obtained the compact MIMO antenna. Furthermore, the simulated results show that the proposed MIMO antenna achieves the total gain higher than 5 dB, the isolation less than -11 dB, the envelope correlation coefficient (ECC) value lower than 0.015, and the bandwidth of 100 MHz through the whole WLAN band from 2.4 GHz to 2.484 GHz, indicating promises for WLAN applications.


2019 ◽  
Vol 63 (4) ◽  
pp. 332-342 ◽  
Author(s):  
Yahiea Alnaiemy ◽  
Taha A. Elwi ◽  
Lajos Nagy

This paper presents a printed rectangular slot microstrip antenna array of two elements based on an Electromagnetic Band Gap (EBG) structure. The proposed EBG structure is invented to improve the isolation between the radiating elements for multiple-input multiple-output (MIMO) application. Single and two slotted rectangular microstrip antennas are designed on an FR-4 substrate with a dielectric constant (εr) of 4.3 and loss tangent (tanδ) of 0.025 with thickness of 1.6 mm. The proposed EBG structure is designed as one planar row of 24 slots. The proposed array performance is tested numerically using Computer Simulation Technology Microwave Studio (CSTMW) of Finite Integration Technique (FIT) formulations. The antenna performance in terms of reflection coefficient (S11), isolation coefficient (S21), radiation patterns, boresight gain and Envelope Correlation Coefficient (ECC) are investigated before and after introducing the EBG structure to identify the significant enhancements. The proposed EBG structure is located between the radiating antenna elements to reduce the mutual coupling of the proposed antenna array. The edge to edge separation distance of the proposed antennas is λ0/16, where the λ0 is the free space wavelength at 2.45 GHz. The simulated results show a significant isolation enhancement from –6 dB to –29 dB at the first resonant frequency 2.45 GHz and from –10 dB to –25 dB at the second resonant frequency 5.8 GHz after introducing the EBG structure to the antenna array.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yanjie Wu ◽  
Yunliang Long

This paper presents a long-term evolution (LTE) 700 MHz band multiple-input-multiple-output (MIMO) antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λat 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz withS11≤−6 dB andS21≤−23 dB.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Enze Zhang ◽  
Jinghui Qiu

A four-port dual-band dual circularly polarized (CP) stack-up patch antenna is introduced for multiple-input-multiple-output (MIMO) RFID application. The proposed antenna adopts two FR 4 substrates and one Rogers Ro4350b substrates. Two pairs of isolated ports work at FCC UHF/MW-RFID bands (0.902–0.928 and 2.4–2.485 GHz) with port isolations of 20 dB and 25 dB, respectively. Four inverted-F radiating elements fed with a 90° phase-delay feeding network realize the CP radiation at the FCC UHF-RFID band (0.902–0.928 GHz). The corner-truncated square slot and patch are implemented to obtain CP modes at the MW-RFID band. The relative impedance bandwidths in the FCC UHF and MW band are 10.9% and 9.4%, respectively, with peak gains of 4.1 and 7.2 dBic. The antenna’s MIMO performance of envelope correlation coefficient (ECC) is lower than 0.01, and diversity gain (DG) is close to 10 dB. Thanks to the stack-up configuration, the dual-band RFID antenna realizes good antenna performance with a compact size of 0.6 × 0.6 × 0.07 λ3.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Ahmad Salamin ◽  
Niamat Hussain

Abstract In this work, a unique wideband multiple-input multiple-output (MIMO) antenna for fifth-generation (5G) applications is introduced. Each antenna element in the MIMO system is formed using a modified parasitic ring. To improve the performance of the antenna, a rectangular-shaped region is etched into the opposite side of each element in the ground plane. The proposed MIMO antenna is designed on a commercially available FR-4 substrate, having total dimensions of 100 × 60 × 0.8 mm3. Most interestingly, the antenna has a measured bandwidth from 2.60 to 5.97 GHz. This will effectively encompass the most predicted feasible bands for futuristic 5G communications, including 5G new radio frequency bands (N77/N78/N79) and long-term evolution (LTE) 46 band. The performance of a single antenna is evaluated in terms of S-parameters, gain, radiation patterns and efficiency. The performance of the MIMO system is also evaluated in terms of the envelope correlation coefficient (ECC) and diversity gain (DG). The designed antenna is fabricated, and the simulation results are verified practically. Good agreement is reached between simulation and measurement results. The proposed design is a good choice for 5G applications that require wideband capabilities.


2018 ◽  
Vol 10 (8) ◽  
pp. 948-955 ◽  
Author(s):  
Ling Wu ◽  
Yingqing Xia ◽  
Xia Cao ◽  
Zhengtao Xu

AbstractA simple multiple-input-multiple-output (MIMO) antenna with quad-band-notched characteristics for ultra-wideband (UWB) system is proposed and tested in the article. Based on two similar radiators, the UWB-MIMO system only occupies 22 mm × 28 mm. By etching an inverted L-like meander slot, two inverted L-shaped slots, and adding a C-shaped stub beside the feeding line, four notched bands are realized (3.25–3.6, 5.05–5.48, 5.6–6, and 7.8–8.4 GHz) to suppress interference from WiMAX, lower WLAN, upper WLAN, and uplink of X-band satellite communication system. With a T-like stub extruding from the ground plane, port isolation is effectively improved. The results show that the antenna covers 3.1–10.6 GHz UWB frequency band except four rejected bands and has high isolation of better than −20 dB over most of the frequency band. Moreover, envelope correlation coefficient and good radiation patterns also prove that the introduced antenna is suitable for UWB applications.


Sign in / Sign up

Export Citation Format

Share Document