scholarly journals IoT-based air quality monitoring systems for smart cities: A systematic mapping study

Author(s):  
Danny Munera ◽  
Diana P. Tobon V. ◽  
Johnny Aguirre ◽  
Natalia Gaviria Gomez

<p>The increased level of air pollution in big cities has become a major concern for several organizations and authorities because of the risk it represents to human health. In this context, the technology has become a very useful tool in the contamination monitoring and the possible mitigation of its impact. Particularly, there are different proposals using the internet of things (IoT) paradigm that use interconnected sensors in order to measure different pollutants. In this paper, we develop a systematic mapping study defined by a five-step methodology to identify and analyze the research status in terms of IoT-based air pollution monitoring systems for smart cities. The study includes 55 proposals, some of which have been implemented in a real environment. We analyze and compare these proposals in terms of different parameters defined in the mapping and highlight some challenges for air quality monitoring systems implementation into the smart city context.</p>

Author(s):  
Gayatri Doctor ◽  
Payal Patel

Air pollution is a major environmental health problem affecting everyone. An air quality index (AQI) helps disseminate air quality information (almost in real time) about pollutants like PM10, PM2.5, NO2, SO2, CO, O3, etc. In the 2018 environmental performance index (EPI), India ranks 177 out of 180 countries, which indicates a need for awareness about air pollution and air quality monitoring. Out of the 100 smart cities in the Indian Smart City Mission, which is an urban renewal program, many cities have considered the inclusion of smart environment sensors or smart poles with environment sensors as part of their proposals. Internet of things (IoT) environmental monitoring applications can monitor (in near real time) the quality of the air in crowded areas, parks, or any location in the city, and its data can be made publicly available to citizens. The chapter describes some IoT environmental monitoring applications being implemented in some of the smart cities like Surat, Kakinada.


2017 ◽  
Vol 13 (08) ◽  
pp. 79 ◽  
Author(s):  
Nagarjuna Telagam ◽  
Nehru Kandasamy ◽  
Nagendra Prasad G ◽  
Menakadevi Nanjundan

A ZigBee based wireless sensor network is implemented in this paper which is of low-cost solar-powered air quality monitoring system. The main objective of the proposed architecture is to interfacing various sensors to measure the sensor analog data and displayed in LabVIEW on the monitor using the graphical user interface (GUI).  The real time ambient air quality monitoring in smart cities is of greater significance for the health of people. The wireless network sensor nodes are placed at different traffic signals in the smart cities which collect and report real-time data on different gases which are present in the environment such as carbon monoxide (CO), nitrogen dioxide (NO2), methane (CH4) and humidity. The proposed system allows smart cities to monitor air quality conditions on a desktop/laptop computer through an application designed using graphical programming based LabVIEW software and provides an alert if the air quality characteristics exceed acceptable levels. The sensor network was successfully tested on the campus of the institute of aeronautical engineering, Hyderabad. The sensor data are indicated by different indicators on the front panel of LabVIEW and also different charts are plotted with respect to time and amplitude which explains the severity of polluted areas.


2020 ◽  
Vol 9 (1) ◽  
pp. 1127-1130

A model for Greenhouse farming Air PollutionMonitoring System for the concentrations of majorair pollutant gases has been developed. Air pollution in greenhouse farming is caused due to various elements in which the major constituent are fertilizers.This system uses IOT based Air Quality monitoring system and prediction framework.This device measures the concentration of harmfull gases like CO,LPG,Ammonia,Methane using gas sensors.The sensors will detect the environmental conditions of the farm and will send the data to Arduino.The device is connected to Cloud using ThingSpeak via WiFi module.This system provides information about the air quality in the farm with the help of Android application which helps the farmers to maintain the air conditions in the farming land.The motivation of this project is to provide a cheaper monitoring systems which is beneficiary to all users


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4451 ◽  
Author(s):  
Lan Luo ◽  
Yue Zhang ◽  
Bryan Pearson ◽  
Zhen Ling ◽  
Haofei Yu ◽  
...  

The emerging connected, low-cost, and easy-to-use air quality monitoring systems have enabled a paradigm shift in the field of air pollution monitoring. These systems are increasingly being used by local government and non-profit organizations to inform the public, and to support decision making related to air quality. However, data integrity and system security are rarely considered during the design and deployment of such monitoring systems, and such ignorance leaves tremendous room for undesired and damaging cyber intrusions. The collected measurement data, if polluted, could misinform the public and mislead policy makers. In this paper, we demonstrate such issues by using a.com, a popular low-cost air quality monitoring system that provides an affordable and continuous air quality monitoring capability to broad communities. To protect the air quality monitoring network under this investigation, we denote the company of interest as a.com. Through a series of probing, we are able to identify multiple security vulnerabilities in the system, including unencrypted message communication, incompetent authentication mechanisms, and lack of data integrity verification. By exploiting these vulnerabilities, we have the ability of “impersonating” any victim sensor in the a.com system and polluting its data using fabricated data. To the best of our knowledge, this is the first security analysis of low-cost and connected air quality monitoring systems. Our results highlight the urgent need in improving the security and data integrity design in these systems.


2020 ◽  
Vol 12 (10) ◽  
pp. 4024 ◽  
Author(s):  
Gonçalo Marques ◽  
Jagriti Saini ◽  
Maitreyee Dutta ◽  
Pradeep Kumar Singh ◽  
Wei-Chiang Hong

Smart cities follow different strategies to face public health challenges associated with socio-economic objectives. Buildings play a crucial role in smart cities and are closely related to people’s health. Moreover, they are equally essential to meet sustainable objectives. People spend most of their time indoors. Therefore, indoor air quality has a critical impact on health and well-being. With the increasing population of elders, ambient-assisted living systems are required to promote occupational health and well-being. Furthermore, living environments must incorporate monitoring systems to detect unfavorable indoor quality scenarios in useful time. This paper reviews the current state of the art on indoor air quality monitoring systems based on Internet of Things and wireless sensor networks in the last five years (2014–2019). This document focuses on the architecture, microcontrollers, connectivity, and sensors used by these systems. The main contribution is to synthesize the existing body of knowledge and identify common threads and gaps that open up new significant and challenging future research directions. The results show that 57% of the indoor air quality monitoring systems are based on Arduino, 53% of the systems use Internet of Things, and WSN architectures represent 33%. The CO2 and PM monitoring sensors are the most monitored parameters in the analyzed literature, corresponding to 67% and 29%, respectively.


Author(s):  
Adnan Rafi Al Tahtawi ◽  
Erick Andika ◽  
Maulana Yusuf ◽  
Wildan Nurfauzan Harjanto

Air pollution is one of problems causing global warming that is currently taking a place. Several air quality monitoring devices usually located at the city center are only limited to display data at one point. Therefore, a mobile device to monitor air quality is needed so as to enable the monitoring in several points. This paper aims to design an air quality monitoring system based on quadrotor Unmanned Aerial Vehicle (UAV) and Internet-of-Things (IoT) technology. The sensor system is designed to detect CO, CO2, air quality, and temperature variables. This sensor systems was then integrated with quadrotor in order to make the monitoring process can be carried out at various points. Quadrotor was designed using Ardupilot Mega (APM) 2.6 as the flight controler. Measurement data from system sensor was transmitted wirelessly using internet network via Wi-Fi module. Based on the test results, the sensor system was able to detect concentration of several test gas and was linear to the output voltage. Quadrotor orientation parameters at takeoff produced transient responses in less than 1 second. The air pollution sensor parameter data could also be displayed every 10 seconds on the ThingSpeak and ThingView interfaces, and could be mapped based on the data retrieval coordinates.


2021 ◽  
Author(s):  
Sonu Kumar Jha ◽  
Mohit Kumar ◽  
Vipul Arora ◽  
Sachchida Nand Tripathi ◽  
Vidyanand Motiram Motghare ◽  
...  

<div>Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM2.5 levels of LCSDs. The dataset used for the experimentation consists of PM2.5 values and other parameters (PM10, temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM2.5, PM10, temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R2) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.</div>


2021 ◽  
Vol 11 (3) ◽  
pp. 1-14
Author(s):  
Rasha AbdulWahhab ◽  
Karan Jetly Jetly ◽  
Shqran Shakir

Research activity in the field of monitoring indoor quality systems has increased dramatically in recent years. Monitoring closed areas can reduce health-related risks due to poor or contaminated air quality. In the current COVID pandemic, the population has observed that improving ventilation in the closed area can significantly reduce infection risk. However, the significance of air quality statistics makes highly accurate real-time monitoring systems vital. In this paper, several researchers' protocols and the methodologies for monitoring a good high indoor air quality system are presented. The majority of the reviewed works are aimed to reduce air pollution levels of the atmosphere. The vast majority of the identified works utilized IoT and WSN technology to fix the partial access to sensed data, high cost, and non-scalability of conventional air monitoring systems. Furthermore, ad-hoc approaches are predominantly used to help society change its attitude and impose corrective actions to improve air quality. This paper presents a short but comprehensive review of several researchers works with different approaches to ecological trend analysis capabilities, drawing on existing literature works. Overall, the findings highlight the need for developing systematic protocols for these systems and establishing smart air quality monitoring systems capable of measuring pollutant concentrations in the air.


Author(s):  
Artur F. da S. Veloso ◽  
Jocines D. F. Silveira ◽  
Mario C. L. Moura ◽  
Jose V. dos Reis ◽  
Ricardo A. L. Rabelo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document